Date | May 2017 | Marks available | 5 | Reference code | 17M.1.sl.TZ2.9 |
Level | SL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
Note: In this question, distance is in metres and time is in seconds.
Two particles \({P_1}\) and \({P_2}\) start moving from a point A at the same time, along different straight lines.
After \(t\) seconds, the position of \({P_1}\) is given by r = \(\left( {\begin{array}{*{20}{c}} 4 \\ { - 1} \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right)\).
Two seconds after leaving A, \({P_1}\) is at point B.
Two seconds after leaving A, \({P_2}\) is at point C, where \(\overrightarrow {{\text{AC}}} = \left( {\begin{array}{*{20}{c}} 3 \\ 0 \\ 4 \end{array}} \right)\).
Find the coordinates of A.
Find \(\overrightarrow {{\text{AB}}} \);
Find \(\left| {\overrightarrow {{\text{AB}}} } \right|\).
Find \(\cos {\rm{B\hat AC}}\).
Hence or otherwise, find the distance between \({P_1}\) and \({P_2}\) two seconds after they leave A.
Markscheme
recognizing \(t = 0\) at A (M1)
A is \((4,{\text{ }} - 1,{\text{ }}3)\) A1 N2
[2 marks]
METHOD 1
valid approach (M1)
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 4 \\ { - 1} \\ 3 \end{array}} \right) + 2\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 2} \end{array}} \right),{\text{ }}(6,{\text{ }}3,{\text{ }} - 1)\)
correct approach to find \(\overrightarrow {{\text{AB}}} \) (A1)
eg\(\,\,\,\,\,\)\({\text{AO}} + {\text{OB}},{\text{ B}} - {\text{A, }}\left( {\begin{array}{*{20}{c}} 6 \\ 3 \\ { - 1} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 4 \\ { - 1} \\ 3 \end{array}} \right)\)
\(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ 4 \\ { - 4} \end{array}} \right)\) A1 N2
METHOD 2
recognizing \(\overrightarrow {{\text{AB}}} \) is two times the direction vector (M1)
correct working (A1)
eg\(\,\,\,\,\,\)\(\overrightarrow {{\text{AB}}} = 2\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 2} \end{array}} \right)\)
\(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ 4 \\ { - 4} \end{array}} \right)\) A1 N2
[3 marks]
correct substitution (A1)
eg\(\,\,\,\,\,\)\(\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {{2^2} + {4^2} + {4^2}} ,{\text{ }}\sqrt {4 + 16 + 16} ,{\text{ }}\sqrt {36} \)
\(\left| {\overrightarrow {{\text{AB}}} } \right| = 6\) A1 N2
[2 marks]
METHOD 1 (vector approach)
valid approach involving \(\overrightarrow {{\text{AB}}} \) and \(\overrightarrow {{\text{AC}}} \) (M1)
eg\(\,\,\,\,\,\)\(\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AC}}} ,{\text{ }}\frac{{\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{AC}}} }}{{{\text{AB}} \times {\text{AC}}}}\)
finding scalar product and \(\left| {\overrightarrow {{\text{AC}}} } \right|\) (A1)(A1)
scalar product \(2(3) + 4(0) - 4(4){\text{ }}( = - 10)\)
\(\left| {\overrightarrow {{\text{AC}}} } \right| = \sqrt {{3^2} + {0^2} + {4^2}} {\text{ }}( = 5)\)
substitution of their scalar product and magnitudes into cosine formula (M1)
eg\(\,\,\,\,\,\)\(\cos {\rm{B\hat AC = }}\frac{{6 + 0 - 16}}{{6\sqrt {{3^2} + {4^2}} }}\)
\({\text{cos}}\,B\hat AC = - \frac{{10}}{{30}}\left( { = - \frac{1}{3}} \right)\) A1 N2
METHOD 2 (triangle approach)
valid approach involving cosine rule (M1)
eg\(\,\,\,\,\,\)\(\cos {\rm{B\hat AC = }}\frac{{{\text{A}}{{\text{B}}^2} + {\text{A}}{{\text{C}}^2} - {\text{B}}{{\text{C}}^2}}}{{2 \times {\text{AB}} \times {\text{AC}}}}\)
finding lengths AC and BC (A1)(A1)
\({\text{AC}} = 5,{\text{ BC}} = 9\)
substitution of their lengths into cosine formula (M1)
eg\(\,\,\,\,\,\)\(\cos {\rm{B\hat AC}} = \frac{{{5^2} + {6^2} - {9^2}}}{{2 \times 5 \times 6}}\)
\(\cos {\rm{B\hat AC}} = - \frac{{20}}{{60}}{\text{ }}\left( { = - \frac{1}{3}} \right)\) A1 N2
[5 marks]
Note: Award relevant marks for working seen to find BC in part (c) (if cosine rule used in part (c)).
METHOD 1 (using cosine rule)
recognizing need to find BC (M1)
choosing cosine rule (M1)
eg\(\,\,\,\,\,\)\({c^2} = {a^2} + {b^2} - 2ab\cos {\text{C}}\)
correct substitution into RHS A1
eg\(\,\,\,\,\,\)\({\text{B}}{{\text{C}}^2} = {(6)^2} + {(5)^2} - 2(6)(5)\left( { - \frac{1}{3}} \right),{\text{ }}36 + 25 + 20\)
distance is 9 A1 N2
METHOD 2 (finding magnitude of \(\overrightarrow {BC} \))
recognizing need to find BC (M1)
valid approach (M1)
eg\(\,\,\,\,\,\)attempt to find \(\overrightarrow {{\rm{OB}}} \) or \(\overrightarrow {{\rm{OC}}} \), \(\overrightarrow {{\rm{OB}}} = \left( {\begin{array}{*{20}{c}} 6 \\ 3 \\ { - 1} \end{array}} \right)\) or \(\overrightarrow {{\rm{OC}}} = \left( {\begin{array}{*{20}{c}} 7 \\ { - 1} \\ 7 \end{array}} \right),{\text{ }}\overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{AC}}} \)
correct working A1
eg\(\,\,\,\,\,\)\(\overrightarrow {{\rm{BC}}} = \left( {\begin{array}{*{20}{c}} 1 \\ { - 4} \\ 8 \end{array}} \right),{\text{ }}\overrightarrow {{\rm{CB}}} = \left( {\begin{array}{*{20}{c}} { - 1} \\ 4 \\ { - 8} \end{array}} \right),{\text{ }}\sqrt {{1^2} + {4^2} + {8^2}} = \sqrt {81} \)
distance is 9 A1 N2
METHOD 3 (finding coordinates and using distance formula)
recognizing need to find BC (M1)
valid approach (M1)
eg\(\,\,\,\,\,\)attempt to find coordinates of B or C, \({\text{B}}(6,{\text{ }}3,{\text{ }} - 1)\) or \({\text{C}}(7,{\text{ }} - 1,{\text{ }}7)\)
correct substitution into distance formula A1
eg\(\,\,\,\,\,\)\({\text{BC}} = \sqrt {{{(6 - 7)}^2} + {{\left( {3 - ( - 1)} \right)}^2} + {{( - 1 - 7)}^2}} ,{\text{ }}\sqrt {{1^2} + {4^2} + {8^2}} = \sqrt {81} \)
distance is 9 A1 N2
[4 marks]