User interface language: English | Español

Date May 2010 Marks available 5 Reference code 10M.2.sl.TZ1.8
Level SL only Paper 2 Time zone TZ1
Command term Find and Hence or otherwise Question number 8 Adapted from N/A

Question

The diagram below shows a quadrilateral ABCD with obtuse angles AˆBCAˆBC and AˆDCAˆDC.


AB = 5 cm, BC = 4 cm, CD = 4 cm, AD = 4 cm , BˆAC=30BˆAC=30 , AˆBC=xAˆBC=x , AˆDC=yAˆDC=y .

Use the cosine rule to show that AC=4140cosxAC=4140cosx .

[1]
a.

Use the sine rule in triangle ABC to find another expression for AC.

[2]
b.

(i)     Hence, find x, giving your answer to two decimal places.

(ii)    Find AC .

[6]
c.

(i)     Find y.

(ii)    Hence, or otherwise, find the area of triangle ACD.

[5]
d(i) and (ii).

Markscheme

correct substitution     A1

e.g. 25+1640cosx25+1640cosx , 52+422×4×5cosx52+422×4×5cosx

AC=4140cosxAC=4140cosx     AG

[1 mark]

a.

correct substitution     A1

e.g. ACsinx=4sin30ACsinx=4sin30 , 12AC=4sinx12AC=4sinx

AC=8sinxAC=8sinx (accept 4sinxsin304sinxsin30)     A1     N1

[2 marks]

b.

(i) evidence of appropriate approach using AC     M1

e.g. 8sinx=4140cosx8sinx=4140cosx , sketch showing intersection

correct solution 8.6828.682, 111.317111.317     (A1)

obtuse value 111.317111.317     (A1)

x=111.32x=111.32 to 2 dp (do not accept the radian answer 1.94 )     A1     N2

(ii) substituting value of x into either expression for AC     (M1)

e.g. AC=8sin111.32AC=8sin111.32

AC=7.45AC=7.45     A1     N2

[6 marks]

c.

(i) evidence of choosing cosine rule     (M1)

e.g. cosB=a2+c2b22accosB=a2+c2b22ac

correct substitution     A1

e.g. 42+427.4522×4×442+427.4522×4×4 , 7.452=3232cosy7.452=3232cosy , cosy=0.734cosy=0.734

y=137y=137     A1     N2

(ii) correct substitution into area formula     (A1)

e.g. 12×4×4×sin13712×4×4×sin137 , 8sin1378sin137

area =5.42=5.42     A1     N2

[5 marks]

d(i) and (ii).

Examiners report

Many candidates worked comfortably with the sine and cosine rules in part (a) and (b).

a.

Many candidates worked comfortably with the sine and cosine rules in part (a) and (b). Equally as many did not take the cue from the word "hence" and used an alternate method to solve the problem and thus did not receive full marks. Those who managed to set up an equation, again did not go directly to their GDC but rather engaged in a long, laborious analytical approach that was usually unsuccessful.

b.

Equally as many did not take the cue from the word "hence" and used an alternate method to solve the problem and thus did not receive full marks. Those who managed to set up an equation, again did not go directly to their GDC but rather engaged in a long, laborious analytical approach that was usually unsuccessful. No matter what values were found in (c) (i) most candidates recovered and earned follow through marks for the remainder of the question. A large number of candidates worked in the wrong mode and rounded prematurely throughout this question often resulting in accuracy penalties.

c.

Equally as many did not take the cue from the word "hence" and used an alternate method to solve the problem and thus did not receive full marks. Those who managed to set up an equation, again did not go directly to their GDC but rather engaged in a long, laborious analytical approach that was usually unsuccessful. No matter what values were found in (c) (i) most candidates recovered and earned follow through marks for the remainder of the question. A large number of candidates worked in the wrong mode and rounded prematurely throughout this question often resulting in accuracy penalties.

d(i) and (ii).

Syllabus sections

Topic 2 - Functions and equations » 2.7 » Use of technology to solve a variety of equations, including those where there is no appropriate analytic approach.

View options