Date | May 2014 | Marks available | 3 | Reference code | 14M.2.sl.TZ2.5 |
Level | SL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
In triangle \(\rm{ABC}\), \(\rm{AB} = 6\,\rm{cm}\) and \(\rm{AC} = 8\,\rm{cm}\). The area of the triangle is \(16\,\rm{cm}^2\).
Find the two possible values for \(\hat A\).
Given that \(\hat A\) is obtuse, find \({\text{BC}}\).
Markscheme
correct substitution into area formula (A1)
eg \(\frac{1}{2}(6)(8)\sin A = 16,{\text{ }}\sin A = \frac{{16}}{{24}}\)
correct working (A1)
eg \(A = \arcsin \left( {\frac{2}{3}} \right)\)
\(A = 0.729727656…, 2.41186499…\); \((41.8103149^\circ, 138.1896851^\circ)\)
\(A = 0.730\); \(2.41\) A1A1 N3
(accept degrees ie \(41.8^\circ\); \(138^\circ\))
[4 marks]
evidence of choosing cosine rule (M1)
eg \({\text{B}}{{\text{C}}^2} = {\text{A}}{{\text{B}}^2} + {\text{A}}{{\text{C}}^2} - 2({\text{AB)(AC)}}\cos A,{\text{ }}{a^2} + {b^2} - 2ab\cos C\)
correct substitution into RHS (angle must be obtuse) (A1)
eg \({\text{B}}{{\text{C}}^2} = {6^2} + {8^2} - 2(6)(8)\cos 2.41,{\text{ }}{6^2} + {8^2} - 2(6)(8)\cos 138^\circ \),
\({\text{BC}} = \sqrt {171.55} \)
\({\text{BC}} = 13.09786\)
\({\text{BC}} = 13.1{\text{ cm}}\) A1 N2
[3 marks]