DP Mathematics HL Questionbank

6.7
Path: |
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.8b: Hence find the value...
- 18M.1.hl.TZ2.8a: Use the substitution u=x12u=x12 to...
- 18M.1.hl.TZ2.6b: Hence, or otherwise, find...
- 16M.1.hl.TZ1.13c: (i) Find the value of I0. (ii) Prove that...
- 16M.1.hl.TZ1.13b: Use the substitution u=lnx to find the area of the region R.
- 17N.2.hl.TZ0.8: By using the substitution x2=2secθ, show that...
- 17M.1.hl.TZ2.9b: Find ∫f(x)cosxdx.
- 17M.1.hl.TZ2.6b: Hence find the value of...
- 17M.1.hl.TZ2.6a: Using the substitution x=tanθ show that...
- 17M.1.hl.TZ1.9: Find ∫arcsinxdx
- 15N.1.hl.TZ0.12f: Find the area of the region enclosed by the graph of y=f(x) and the x-axis for...
- 15N.1.hl.TZ0.5: Use the substitution u=lnx to find the value of...
- 15N.1.hl.TZ0.2: Using integration by parts find ∫xsinxdx.
- 12M.1.hl.TZ1.12c: Use the substitution x=sin2θ to show that...
- 12M.1.hl.TZ2.10c: The region bounded by the graph, the x-axis and the y-axis is denoted by A and the region bounded...
- 12N.2.hl.TZ0.8: By using the substitution x=sint , find...
- 08M.2.hl.TZ1.9: By using an appropriate substitution...
- 08M.1.hl.TZ2.6: Show that...
- 08N.1.hl.TZ0.5: Calculate the exact value of ∫e1x2lnxdx .
- 11M.1.hl.TZ2.13b: Find the value of ∫10√x4−xdx using the substitution...
- 11M.2.hl.TZ2.13B: (a) Using integration by parts, show that...
- 11M.3ca.hl.TZ0.4a: Show that I0=12(1+e−π) .
- 11M.3ca.hl.TZ0.4b: By letting y=x−nπ , show that In=e−nπI0 .
- 09N.1.hl.TZ0.7a: Calculate...
- SPNone.1.hl.TZ0.11b: Find the value of the integral ∫0.50arcsinxdx .
- SPNone.1.hl.TZ0.11a: Find the value of the integral ∫√20√4−x2dx .
- SPNone.1.hl.TZ0.11c: Using the substitution t=tanθ , find the value of the...
- 16N.1.hl.TZ0.11f: Find the area of the region enclosed by the graph of f and the x-axis. The curvature at...
- 13M.1.hl.TZ1.12e: By using a suitable substitution show that...
- 10M.1.hl.TZ1.9: (a) Given that α>1, use the substitution u=1x to show...
- 10M.1.hl.TZ2.9: Find the value of ∫10tln(t+1)dt.
- 13M.2.hl.TZ2.4a: Find ∫xsec2xdx.
- 09M.2.hl.TZ1.6: (a) Integrate ∫sinθ1−cosθdθ...
- 09M.2.hl.TZ2.9: Using the substitution x=2sinθ , show...
- 14M.2.hl.TZ1.6b: Find ∫f(x)dx.
- 14M.1.hl.TZ2.10: Use the substitution x=asecθ to show that...
- 14M.2.hl.TZ2.14b: Use the substitution u=t2 to find ∫t12+t4dt.
- 15M.1.hl.TZ1.8: By using the substitution u=ex+3, find...
- 15M.1.hl.TZ2.5: Show that ∫21x3lnxdx=4ln2−1516.
- 15M.1.hl.TZ2.8: By using the substitution t=tanx, find...
- 14N.1.hl.TZ0.6: By using the substitution u=1+√x, find...
Sub sections and their related questions
Integration by substitution.
- 12M.1.hl.TZ1.12c: Use the substitution x=sin2θ to show that...
- 12N.2.hl.TZ0.8: By using the substitution x=sint , find...
- 08M.2.hl.TZ1.9: By using an appropriate substitution...
- 11M.1.hl.TZ2.13b: Find the value of ∫10√x4−xdx using the substitution...
- 11M.3ca.hl.TZ0.4b: By letting y=x−nπ , show that In=e−nπI0 .
- 09N.1.hl.TZ0.7a: Calculate...
- SPNone.1.hl.TZ0.11a: Find the value of the integral ∫√20√4−x2dx .
- SPNone.1.hl.TZ0.11c: Using the substitution t=tanθ , find the value of the...
- 13M.1.hl.TZ1.12e: By using a suitable substitution show that...
- 10M.1.hl.TZ1.9: (a) Given that α>1, use the substitution u=1x to show...
- 09M.2.hl.TZ1.6: (a) Integrate ∫sinθ1−cosθdθ...
- 09M.2.hl.TZ2.9: Using the substitution x=2sinθ , show...
- 14M.2.hl.TZ1.6b: Find ∫f(x)dx.
- 14M.1.hl.TZ2.10: Use the substitution x=asecθ to show that...
- 14M.2.hl.TZ2.14b: Use the substitution u=t2 to find ∫t12+t4dt.
- 14N.1.hl.TZ0.6: By using the substitution u=1+√x, find...
- 15M.1.hl.TZ1.8: By using the substitution u=ex+3, find...
- 15M.1.hl.TZ2.8: By using the substitution t=tanx, find...
- 15N.1.hl.TZ0.5: Use the substitution u=lnx to find the value of...
- 15N.1.hl.TZ0.12f: Find the area of the region enclosed by the graph of y=f(x) and the x-axis for...
- 16M.1.hl.TZ1.13b: Use the substitution u=lnx to find the area of the region R.
- 16M.1.hl.TZ1.13c: (i) Find the value of I0. (ii) Prove that...
- 17M.1.hl.TZ2.6a: Using the substitution x=tanθ show that...
- 17M.1.hl.TZ2.6b: Hence find the value of...
- 17N.2.hl.TZ0.8: By using the substitution x2=2secθ, show that...
- 18M.1.hl.TZ2.8a: Use the substitution u=x12 to...
- 18M.1.hl.TZ2.8b: Hence find the value...
Integration by parts.
- 12M.1.hl.TZ2.10c: The region bounded by the graph, the x-axis and the y-axis is denoted by A and the region bounded...
- 08M.1.hl.TZ2.6: Show that...
- 08N.1.hl.TZ0.5: Calculate the exact value of ∫e1x2lnxdx .
- 11M.2.hl.TZ2.13B: (a) Using integration by parts, show that...
- 11M.3ca.hl.TZ0.4a: Show that I0=12(1+e−π) .
- SPNone.1.hl.TZ0.11b: Find the value of the integral ∫0.50arcsinxdx .
- 10M.1.hl.TZ2.9: Find the value of ∫10tln(t+1)dt.
- 13M.2.hl.TZ2.4a: Find ∫xsec2xdx.
- 15M.1.hl.TZ2.5: Show that ∫21x3lnxdx=4ln2−1516.
- 15N.1.hl.TZ0.2: Using integration by parts find ∫xsinxdx.
- 16N.1.hl.TZ0.11f: Find the area of the region enclosed by the graph of f and the x-axis. The curvature at...
- 17M.1.hl.TZ1.9: Find ∫arcsinxdx
- 17M.1.hl.TZ2.9b: Find ∫f(x)cosxdx.
- 18M.1.hl.TZ2.6b: Hence, or otherwise, find...