DP Mathematics HL Questionbank
6.7
Path: |
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.8b: Hence find the value...
- 18M.1.hl.TZ2.8a: Use the substitution \(u = {x^{\frac{1}{2}}}\) to...
- 18M.1.hl.TZ2.6b: Hence, or otherwise, find...
- 16M.1.hl.TZ1.13c: (i) Find the value of \({I_0}\). (ii) Prove that...
- 16M.1.hl.TZ1.13b: Use the substitution \(u = \ln x\) to find the area of the region \(R\).
- 17N.2.hl.TZ0.8: By using the substitution \({x^2} = 2\sec \theta \), show that...
- 17M.1.hl.TZ2.9b: Find \(\int {f(x)\cos x{\text{d}}x} \).
- 17M.1.hl.TZ2.6b: Hence find the value of...
- 17M.1.hl.TZ2.6a: Using the substitution \(x = \tan \theta \) show that...
- 17M.1.hl.TZ1.9: Find \(\int {\arcsin x\,{\text{d}}x} \)
- 15N.1.hl.TZ0.12f: Find the area of the region enclosed by the graph of \(y = f(x)\) and the \(x\)-axis for...
- 15N.1.hl.TZ0.5: Use the substitution \(u = \ln x\) to find the value of...
- 15N.1.hl.TZ0.2: Using integration by parts find \(\int {x\sin x{\text{d}}x} \).
- 12M.1.hl.TZ1.12c: Use the substitution \(x = {\sin ^2}\theta \) to show that...
- 12M.1.hl.TZ2.10c: The region bounded by the graph, the x-axis and the y-axis is denoted by A and the region bounded...
- 12N.2.hl.TZ0.8: By using the substitution \(x = \sin t\) , find...
- 08M.2.hl.TZ1.9: By using an appropriate substitution...
- 08M.1.hl.TZ2.6: Show that...
- 08N.1.hl.TZ0.5: Calculate the exact value of \(\int_1^{\text{e}} {{x^2}\ln x{\text{d}}x} \) .
- 11M.1.hl.TZ2.13b: Find the value of \(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} }{{\text{d}}x} \) using the substitution...
- 11M.2.hl.TZ2.13B: (a) Using integration by parts, show that...
- 11M.3ca.hl.TZ0.4a: Show that \({I_0} = \frac{1}{2}(1 + {{\text{e}}^{ - \pi }})\) .
- 11M.3ca.hl.TZ0.4b: By letting \(y = x - n\pi \) , show that \({I_n} = {{\text{e}}^{ - n\pi }}{I_0}\) .
- 09N.1.hl.TZ0.7a: Calculate...
- SPNone.1.hl.TZ0.11b: Find the value of the integral \(\int_0^{0.5} {\arcsin x {\text{d}}x} \) .
- SPNone.1.hl.TZ0.11a: Find the value of the integral \(\int_0^{\sqrt 2 } {\sqrt {4 - {x^2}} {\text{d}}x} \) .
- SPNone.1.hl.TZ0.11c: Using the substitution \(t = \tan \theta \) , find the value of the...
- 16N.1.hl.TZ0.11f: Find the area of the region enclosed by the graph of \(f\) and the \(x\)-axis. The curvature at...
- 13M.1.hl.TZ1.12e: By using a suitable substitution show that...
- 10M.1.hl.TZ1.9: (a) Given that \(\alpha > 1\), use the substitution \(u = \frac{1}{x}\) to show...
- 10M.1.hl.TZ2.9: Find the value of \(\int_0^1 {t\ln (t + 1){\text{d}}t} \).
- 13M.2.hl.TZ2.4a: Find \(\int {x{{\sec }^2}x{\text{d}}x} \).
- 09M.2.hl.TZ1.6: (a) Integrate \(\int {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta \)...
- 09M.2.hl.TZ2.9: Using the substitution \(x = 2\sin \theta \) , show...
- 14M.2.hl.TZ1.6b: Find \(\int {f(x){\text{d}}x} \).
- 14M.1.hl.TZ2.10: Use the substitution \(x = a\sec \theta \) to show that...
- 14M.2.hl.TZ2.14b: Use the substitution \(u = {t^2}\) to find \(\int {\frac{t}{{12 + {t^4}}}{\text{d}}t} \).
- 15M.1.hl.TZ1.8: By using the substitution \(u = {{\text{e}}^x} + 3\), find...
- 15M.1.hl.TZ2.5: Show that \(\int_1^2 {{x^3}\ln x{\text{d}}x = 4\ln 2 - \frac{{15}}{{16}}} \).
- 15M.1.hl.TZ2.8: By using the substitution \(t = \tan x\), find...
- 14N.1.hl.TZ0.6: By using the substitution \(u = 1 + \sqrt x \), find...
Sub sections and their related questions
Integration by substitution.
- 12M.1.hl.TZ1.12c: Use the substitution \(x = {\sin ^2}\theta \) to show that...
- 12N.2.hl.TZ0.8: By using the substitution \(x = \sin t\) , find...
- 08M.2.hl.TZ1.9: By using an appropriate substitution...
- 11M.1.hl.TZ2.13b: Find the value of \(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} }{{\text{d}}x} \) using the substitution...
- 11M.3ca.hl.TZ0.4b: By letting \(y = x - n\pi \) , show that \({I_n} = {{\text{e}}^{ - n\pi }}{I_0}\) .
- 09N.1.hl.TZ0.7a: Calculate...
- SPNone.1.hl.TZ0.11a: Find the value of the integral \(\int_0^{\sqrt 2 } {\sqrt {4 - {x^2}} {\text{d}}x} \) .
- SPNone.1.hl.TZ0.11c: Using the substitution \(t = \tan \theta \) , find the value of the...
- 13M.1.hl.TZ1.12e: By using a suitable substitution show that...
- 10M.1.hl.TZ1.9: (a) Given that \(\alpha > 1\), use the substitution \(u = \frac{1}{x}\) to show...
- 09M.2.hl.TZ1.6: (a) Integrate \(\int {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta \)...
- 09M.2.hl.TZ2.9: Using the substitution \(x = 2\sin \theta \) , show...
- 14M.2.hl.TZ1.6b: Find \(\int {f(x){\text{d}}x} \).
- 14M.1.hl.TZ2.10: Use the substitution \(x = a\sec \theta \) to show that...
- 14M.2.hl.TZ2.14b: Use the substitution \(u = {t^2}\) to find \(\int {\frac{t}{{12 + {t^4}}}{\text{d}}t} \).
- 14N.1.hl.TZ0.6: By using the substitution \(u = 1 + \sqrt x \), find...
- 15M.1.hl.TZ1.8: By using the substitution \(u = {{\text{e}}^x} + 3\), find...
- 15M.1.hl.TZ2.8: By using the substitution \(t = \tan x\), find...
- 15N.1.hl.TZ0.5: Use the substitution \(u = \ln x\) to find the value of...
- 15N.1.hl.TZ0.12f: Find the area of the region enclosed by the graph of \(y = f(x)\) and the \(x\)-axis for...
- 16M.1.hl.TZ1.13b: Use the substitution \(u = \ln x\) to find the area of the region \(R\).
- 16M.1.hl.TZ1.13c: (i) Find the value of \({I_0}\). (ii) Prove that...
- 17M.1.hl.TZ2.6a: Using the substitution \(x = \tan \theta \) show that...
- 17M.1.hl.TZ2.6b: Hence find the value of...
- 17N.2.hl.TZ0.8: By using the substitution \({x^2} = 2\sec \theta \), show that...
- 18M.1.hl.TZ2.8a: Use the substitution \(u = {x^{\frac{1}{2}}}\) to...
- 18M.1.hl.TZ2.8b: Hence find the value...
Integration by parts.
- 12M.1.hl.TZ2.10c: The region bounded by the graph, the x-axis and the y-axis is denoted by A and the region bounded...
- 08M.1.hl.TZ2.6: Show that...
- 08N.1.hl.TZ0.5: Calculate the exact value of \(\int_1^{\text{e}} {{x^2}\ln x{\text{d}}x} \) .
- 11M.2.hl.TZ2.13B: (a) Using integration by parts, show that...
- 11M.3ca.hl.TZ0.4a: Show that \({I_0} = \frac{1}{2}(1 + {{\text{e}}^{ - \pi }})\) .
- SPNone.1.hl.TZ0.11b: Find the value of the integral \(\int_0^{0.5} {\arcsin x {\text{d}}x} \) .
- 10M.1.hl.TZ2.9: Find the value of \(\int_0^1 {t\ln (t + 1){\text{d}}t} \).
- 13M.2.hl.TZ2.4a: Find \(\int {x{{\sec }^2}x{\text{d}}x} \).
- 15M.1.hl.TZ2.5: Show that \(\int_1^2 {{x^3}\ln x{\text{d}}x = 4\ln 2 - \frac{{15}}{{16}}} \).
- 15N.1.hl.TZ0.2: Using integration by parts find \(\int {x\sin x{\text{d}}x} \).
- 16N.1.hl.TZ0.11f: Find the area of the region enclosed by the graph of \(f\) and the \(x\)-axis. The curvature at...
- 17M.1.hl.TZ1.9: Find \(\int {\arcsin x\,{\text{d}}x} \)
- 17M.1.hl.TZ2.9b: Find \(\int {f(x)\cos x{\text{d}}x} \).
- 18M.1.hl.TZ2.6b: Hence, or otherwise, find...