Date | None Specimen | Marks available | 7 | Reference code | SPNone.1.hl.TZ0.11 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 11 | Adapted from | N/A |
Question
Find the value of the integral \(\int_0^{\sqrt 2 } {\sqrt {4 - {x^2}} {\text{d}}x} \) .
Find the value of the integral \(\int_0^{0.5} {\arcsin x {\text{d}}x} \) .
Using the substitution \(t = \tan \theta \) , find the value of the integral
\[\int_0^{\frac{\pi }{4}} {\frac{{{\text{d}}\theta }}{{3{{\cos }^2}\theta + {{\sin }^2}\theta }}} {\text{ }}.\]
Markscheme
let \(x = 2\sin \theta \) M1
\({\text{d}}x = 2\cos \theta {\text{d}}\theta \) A1
\(I = \int_0^{\frac{\pi }{4}} {2\cos \theta \times 2\cos \theta {\text{d}}\theta \,\,\,\,\,\left( { = 4\int_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } } \right)} \) A1A1
Note: Award A1 for limits and A1 for expression.
\( = 2\int_0^{\frac{\pi }{4}} {(1 + \cos 2\theta ){\text{d}}\theta } \) A1
\( = 2\left[ {\theta + \frac{1}{2}\sin 2\theta } \right]_0^{\frac{\pi }{4}}\) A1
\( = 1 + \frac{\pi }{2}\) A1
[7 marks]
\(I = [x\arcsin x]_0^{0.5} - \int_0^{0.5} {x \times \frac{1}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \) M1A1A1
\( = [x\arcsin x]_0^{0.5} + \left[ {\sqrt {1 - {x^2}} } \right]_0^{0.5}\) A1
\( = \frac{\pi }{{12}} + \frac{{\sqrt 3 }}{2} - 1\) A1
[5 marks]
\({\text{d}}t = {\sec ^2}\theta {\text{d}}\theta {\text{ , }}\left[ {0,\frac{\pi }{4}} \right] \to [0,{\text{ 1]}}\) A1(A1)
\(I = \int_0^1 {\frac{{\frac{{{\text{d}}t}}{{(1 + {t^2})}}}}{{\frac{3}{{(1 + {t^2})}} + \frac{{{t^2}}}{{(1 + {t^2})}}}}} \) M1(A1)
\( = \int_0^1 {\frac{{{\text{d}}t}}{{3 + {t^2}}}} \) A1
\( = \frac{1}{{\sqrt 3 }}\left[ {\arctan \left( {\frac{x}{{\sqrt 3 }}} \right)} \right]_0^1\) A1
\( = \frac{\pi }{{6\sqrt 3 }}\) A1
[7 marks]