User interface language: English | Español

Date May 2009 Marks available 5 Reference code 09M.2.hl.TZ1.6
Level HL only Paper 2 Time zone TZ1
Command term Find and Integrate Question number 6 Adapted from N/A

Question

(a)     Integrate sinθ1cosθdθsinθ1cosθdθ .

(b)     Given that aπ2sinθ1cosθdθ=12aπ2sinθ1cosθdθ=12 and π2<a<ππ2<a<π, find the value of aa .

Markscheme

(a)     sinθ1cosθdθ=(1cosθ)1cosθdθ=ln(1cosθ)+C     (M1)A1A1

Note: Award A1 for ln(1cosθ) and A1 for C.

 

(b)     aπ2sinθ1cosθdθ=12[ln(1cosθ)]aπ2=12     M1

1cosa=e12a=arccos(1e)) or 2.28     A1     N2

 

[5 marks]

Examiners report

Generally well answered, although many students did not include the constant of integration.

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options