Date | May 2009 | Marks available | 5 | Reference code | 09M.2.hl.TZ1.6 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Find and Integrate | Question number | 6 | Adapted from | N/A |
Question
(a) Integrate \(\int {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta \) .
(b) Given that \(\int_{\frac{\pi }{2}}^a {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta = \frac{1}{2}\) and \(\frac{\pi }{2} < a < \pi \), find the value of \(a\) .
Markscheme
(a) \(\int {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta = \int {\frac{{\left( {1 - \cos \theta } \right)'}}{{1 - \cos \theta }}} {\text{d}}\theta = \ln \left( {1 - \cos \theta } \right) + C\) (M1)A1A1
Note: Award A1 for \(\ln \left( {1 - \cos \theta } \right)\) and A1 for C.
(b) \(\int_{\frac{\pi }{2}}^a {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta = \frac{1}{2} \Rightarrow \left[ {\ln \left( {1 - \cos \theta } \right)} \right]_{\frac{\pi }{2}}^a = \frac{1}{2}\) M1
\(1 - \cos a = {{\text{e}}^{\frac{1}{2}}} \Rightarrow a = \arccos \left( {1 - \sqrt {\text{e}} } \right)\)) or \(2.28\) A1 N2
[5 marks]
Examiners report
Generally well answered, although many students did not include the constant of integration.