Date | May 2014 | Marks available | 7 | Reference code | 14M.1.hl.TZ2.10 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
Use the substitution x=asecθ to show that ∫2aa√2dxx3√x2−a2=124a3(3√3+π−6).
Markscheme
x=asecθ
dxdθ=asecθtanθ (A1)
new limits:
x=a√2⇒θ=π4 and x=2a⇒θ=π3 (A1)
∫π3π4asecθtanθa3sec3θ√a2sec2θ−a2dθ M1
=∫π3π4cos2θa3dθ A1
using cos2θ=12(cos2θ+1) M1
12a3[12sin2θ+θ]π3π4 or equivalent A1
=14a3(√32+2π3−1−π2) or equivalent A1
=124a3(3√3+π−6) AG
[7 marks]
Examiners report
[N/A]