Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ2.10
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 10 Adapted from N/A

Question

Use the substitution x=asecθ to show that 2aa2dxx3x2a2=124a3(33+π6).

Markscheme

x=asecθ

dxdθ=asecθtanθ     (A1)

new limits:

x=a2θ=π4 and x=2aθ=π3     (A1)

π3π4asecθtanθa3sec3θa2sec2θa2dθ     M1

=π3π4cos2θa3dθ     A1

using cos2θ=12(cos2θ+1)     M1

12a3[12sin2θ+θ]π3π4 or equivalent     A1

=14a3(32+2π31π2) or equivalent     A1

=124a3(33+π6)     AG

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options