User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ2.10
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 10 Adapted from N/A

Question

Use the substitution \(x = a\sec \theta \) to show that \(\int_{a\sqrt 2 }^{2a} {\frac{{{\text{d}}x}}{{{x^3}\sqrt {{x^2} - {a^2}} }} = \frac{1}{{24{a^3}}}\left( {3\sqrt 3  + \pi  - 6} \right)} \).

Markscheme

\(x = a\sec \theta \)

\(\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = a\sec \theta \tan \theta \)     (A1)

new limits:

\(x = a\sqrt 2  \Rightarrow \theta  = \frac{\pi }{4}\) and \(x = 2a \Rightarrow \theta  = \frac{\pi }{3}\)     (A1)

\(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{a\sec \theta \tan \theta }}{{{a^3}{{\sec }^3}\theta \sqrt {{a^2}{{\sec }^2}\theta  - {a^2}} }}{\text{d}}\theta } \)     M1

\( = \int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}\theta }}{{{a^3}}}{\text{d}}\theta } \)     A1

using \({\cos ^2}\theta  = \frac{1}{2}(\cos 2\theta  + 1)\)     M1

\(\frac{1}{{2{a^3}}}\left[ {\frac{1}{2}\sin 2\theta  + \theta } \right]_{\frac{\pi }{4}}^{\frac{\pi }{3}}\) or equivalent     A1

\( = \frac{1}{{4{a^3}}}\left( {\frac{{\sqrt 3 }}{2} + \frac{{2\pi }}{3} - 1 - \frac{\pi }{2}} \right)\) or equivalent     A1

\( = \frac{1}{{24{a^3}}}\left( {3\sqrt 3  + \pi  - 6} \right)\)     AG

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options