Date | May 2014 | Marks available | 7 | Reference code | 14M.1.hl.TZ2.10 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
Use the substitution \(x = a\sec \theta \) to show that \(\int_{a\sqrt 2 }^{2a} {\frac{{{\text{d}}x}}{{{x^3}\sqrt {{x^2} - {a^2}} }} = \frac{1}{{24{a^3}}}\left( {3\sqrt 3 + \pi - 6} \right)} \).
Markscheme
\(x = a\sec \theta \)
\(\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = a\sec \theta \tan \theta \) (A1)
new limits:
\(x = a\sqrt 2 \Rightarrow \theta = \frac{\pi }{4}\) and \(x = 2a \Rightarrow \theta = \frac{\pi }{3}\) (A1)
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{a\sec \theta \tan \theta }}{{{a^3}{{\sec }^3}\theta \sqrt {{a^2}{{\sec }^2}\theta - {a^2}} }}{\text{d}}\theta } \) M1
\( = \int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}\theta }}{{{a^3}}}{\text{d}}\theta } \) A1
using \({\cos ^2}\theta = \frac{1}{2}(\cos 2\theta + 1)\) M1
\(\frac{1}{{2{a^3}}}\left[ {\frac{1}{2}\sin 2\theta + \theta } \right]_{\frac{\pi }{4}}^{\frac{\pi }{3}}\) or equivalent A1
\( = \frac{1}{{4{a^3}}}\left( {\frac{{\sqrt 3 }}{2} + \frac{{2\pi }}{3} - 1 - \frac{\pi }{2}} \right)\) or equivalent A1
\( = \frac{1}{{24{a^3}}}\left( {3\sqrt 3 + \pi - 6} \right)\) AG
[7 marks]