User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.1.hl.TZ0.5
Level HL only Paper 1 Time zone TZ0
Command term Find and Use Question number 5 Adapted from N/A

Question

Use the substitution \(u = \ln x\) to find the value of \(\int_{\text{e}}^{{{\text{e}}^2}} {\frac{{{\text{d}}x}}{{x\ln x}}} \).

Markscheme

METHOD 1

\(\int_{\text{e}}^{{{\text{e}}^2}} {\frac{{{\text{d}}x}}{{x\ln x}}}  = \left[ {\ln (\ln x)} \right]_{\text{e}}^{{{\text{e}}^2}}\)     (M1)A1

\( = \ln (\ln {{\text{e}}^2}) - \ln (\ln {\text{e}})\;\;\;( = \ln 2 - \ln 1)\)     (A1)

\( = \ln 2\)     A1

[4 marks]

METHOD 2

\(u = \ln x,{\text{ }}\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\)     M1

\( = \int_1^2 {\frac{{{\text{d}}u}}{u}} \)     A1

 

Note:     Condone absent or incorrect limits here.

 

\( = [\ln u]_1^2\) or equivalent in \(x( = \ln 2 - \ln 1)\)     (A1)

\( = \ln 2\)     A1

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options