Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.1.hl.TZ0.5
Level HL only Paper 1 Time zone TZ0
Command term Find and Use Question number 5 Adapted from N/A

Question

Use the substitution u=lnx to find the value of e2edxxlnx.

Markscheme

METHOD 1

e2edxxlnx=[ln(lnx)]e2e     (M1)A1

=ln(lne2)ln(lne)(=ln2ln1)     (A1)

=ln2     A1

[4 marks]

METHOD 2

u=lnx, dudx=1x     M1

=21duu     A1

 

Note:     Condone absent or incorrect limits here.

 

=[lnu]21 or equivalent in x(=ln2ln1)     (A1)

=ln2     A1

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options