Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 7 Reference code SPNone.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 11 Adapted from N/A

Question

Find the value of the integral 204x2dx .

[7]
a.

Find the value of the integral 0.50arcsinxdx .

[5]
b.

Using the substitution t=tanθ , find the value of the integral

π40dθ3cos2θ+sin2θ .

[7]
c.

Markscheme

let x=2sinθ     M1

dx=2cosθdθ     A1

I=π402cosθ×2cosθdθ(=4π40cos2θdθ)     A1A1

Note: Award A1 for limits and A1 for expression.

 

=2π40(1+cos2θ)dθ     A1

=2[θ+12sin2θ]π40     A1

=1+π2     A1

[7 marks]

a.

I=[xarcsinx]0.500.50x×11x2dx     M1A1A1

=[xarcsinx]0.50+[1x2]0.50     A1

=π12+321     A1

[5 marks]

b.

dt=sec2θdθ , [0,π4][0, 1]     A1(A1)

I=10dt(1+t2)3(1+t2)+t2(1+t2)     M1(A1)

=10dt3+t2     A1

=13[arctan(x3)]10     A1

=π63     A1

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options