Date | May 2017 | Marks available | 5 | Reference code | 17M.1.hl.TZ1.9 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
Find \(\int {\arcsin x\,{\text{d}}x} \)
Markscheme
attempt at integration by parts with \(u = \arcsin x\) and \(v' = 1\) M1
\(\int {\arcsin x\,{\text{d}}x} = x\arcsin x - \int {\frac{x}{{\sqrt {1 - {x^2}} }}{\text{d}}x} {\text{ }}\) A1A1
Note: Award A1 for \(x\arcsin x\) and A1 for \( - \int {\frac{x}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \).
solving \(\int {\frac{x}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \) by substitution with \(u = 1 - {x^2}\) or inspection (M1)
\(\int {\arcsin x{\text{d}}x} = x\arcsin x + \sqrt {1 - {x^2}} + c\) A1
[5 marks]
Examiners report
[N/A]