User interface language: English | Español

Date None Specimen Marks available 5 Reference code SPNone.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 11 Adapted from N/A

Question

Find the value of the integral \(\int_0^{\sqrt 2 } {\sqrt {4 - {x^2}} {\text{d}}x} \) .

[7]
a.

Find the value of the integral \(\int_0^{0.5} {\arcsin x {\text{d}}x} \) .

[5]
b.

Using the substitution \(t = \tan \theta \) , find the value of the integral

\[\int_0^{\frac{\pi }{4}} {\frac{{{\text{d}}\theta }}{{3{{\cos }^2}\theta + {{\sin }^2}\theta }}} {\text{ }}.\]

[7]
c.

Markscheme

let \(x = 2\sin \theta \)     M1

\({\text{d}}x = 2\cos \theta {\text{d}}\theta \)     A1

\(I = \int_0^{\frac{\pi }{4}} {2\cos \theta \times 2\cos \theta {\text{d}}\theta \,\,\,\,\,\left( { = 4\int_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } } \right)} \)     A1A1

Note: Award A1 for limits and A1 for expression.

 

\( = 2\int_0^{\frac{\pi }{4}} {(1 + \cos 2\theta ){\text{d}}\theta } \)     A1

\( = 2\left[ {\theta + \frac{1}{2}\sin 2\theta } \right]_0^{\frac{\pi }{4}}\)     A1

\( = 1 + \frac{\pi }{2}\)     A1

[7 marks]

a.

\(I = [x\arcsin x]_0^{0.5} - \int_0^{0.5} {x \times \frac{1}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \)     M1A1A1

\( = [x\arcsin x]_0^{0.5} + \left[ {\sqrt {1 - {x^2}} } \right]_0^{0.5}\)     A1

\( = \frac{\pi }{{12}} + \frac{{\sqrt 3 }}{2} - 1\)     A1

[5 marks]

b.

\({\text{d}}t = {\sec ^2}\theta {\text{d}}\theta {\text{ , }}\left[ {0,\frac{\pi }{4}} \right] \to [0,{\text{ 1]}}\)     A1(A1)

\(I = \int_0^1 {\frac{{\frac{{{\text{d}}t}}{{(1 + {t^2})}}}}{{\frac{3}{{(1 + {t^2})}} + \frac{{{t^2}}}{{(1 + {t^2})}}}}} \)     M1(A1)

\( = \int_0^1 {\frac{{{\text{d}}t}}{{3 + {t^2}}}} \)     A1

\( = \frac{1}{{\sqrt 3 }}\left[ {\arctan \left( {\frac{x}{{\sqrt 3 }}} \right)} \right]_0^1\)     A1

\( = \frac{\pi }{{6\sqrt 3 }}\)     A1

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by parts.

View options