Date | None Specimen | Marks available | 5 | Reference code | SPNone.1.hl.TZ0.11 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 11 | Adapted from | N/A |
Question
Find the value of the integral ∫√20√4−x2dx .
Find the value of the integral ∫0.50arcsinxdx .
Using the substitution t=tanθ , find the value of the integral
∫π40dθ3cos2θ+sin2θ .
Markscheme
let x=2sinθ M1
dx=2cosθdθ A1
I=∫π402cosθ×2cosθdθ(=4∫π40cos2θdθ) A1A1
Note: Award A1 for limits and A1 for expression.
=2∫π40(1+cos2θ)dθ A1
=2[θ+12sin2θ]π40 A1
=1+π2 A1
[7 marks]
I=[xarcsinx]0.50−∫0.50x×1√1−x2dx M1A1A1
=[xarcsinx]0.50+[√1−x2]0.50 A1
=π12+√32−1 A1
[5 marks]
dt=sec2θdθ , [0,π4]→[0, 1] A1(A1)
I=∫10dt(1+t2)3(1+t2)+t2(1+t2) M1(A1)
=∫10dt3+t2 A1
=1√3[arctan(x√3)]10 A1
=π6√3 A1
[7 marks]