Date | May 2017 | Marks available | 3 | Reference code | 17M.1.hl.TZ2.6 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Hence and Find | Question number | 6 | Adapted from | N/A |
Question
Using the substitution x=tanθ show that 1∫01(x2+1)2dx=π4∫0cos2θdθ.
[4]
a.
Hence find the value of 1∫01(x2+1)2dx.
[3]
b.
Markscheme
let x=tanθ
⇒dxdθ=sec2θ (A1)
∫1(x2+1)2dx=∫sec2θ(tan2θ+1)2dθ M1
Note: The method mark is for an attempt to substitute for both x and dx.
=∫1sec2θdθ (or equivalent) A1
when x=0, θ=0 and when x=1, θ=π4 M1
π4∫0cos2θdθ AG
[4 marks]
a.
(1∫01(x2+1)2dx=π4∫0cos2θdθ)=12π4∫0(1+cos2θ)dθ M1
=12[θ+sin2θ2]π40 A1
=π8+14 A1
[3 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.