Date | May 2017 | Marks available | 4 | Reference code | 17M.1.hl.TZ2.6 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 6 | Adapted from | N/A |
Question
Using the substitution \(x = \tan \theta \) show that \(\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x = } \int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } \).
Hence find the value of \(\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x} \).
Markscheme
let \(x = \tan \theta \)
\( \Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}\theta }} = {\sec ^2}\theta \) (A1)
\(\int {\frac{1}{{{{({x^2} + 1)}^2}}}{\text{d}}x = \int {\frac{{{{\sec }^2}\theta }}{{{{({{\tan }^2}\theta + 1)}^2}}}{\text{d}}\theta } } \) M1
Note: The method mark is for an attempt to substitute for both \(x\) and \({\text{d}}x\).
\( = \int {\frac{1}{{{{\sec }^2}\theta }}{\text{d}}\theta } \) (or equivalent) A1
when \(x = 0,{\text{ }}\theta = 0\) and when \(x = 1,{\text{ }}\theta = \frac{\pi }{4}\) M1
\(\int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } \) AG
[4 marks]
\(\left( {\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x} = \int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } } \right) = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\left( {1 + \cos 2\theta } \right){\text{d}}\theta } \) M1
\( = \frac{1}{2}\left[ {\theta + \frac{{\sin 2\theta }}{2}} \right]_0^{\frac{\pi }{4}}\) A1
\( = \frac{\pi }{8} + \frac{1}{4}\) A1
[3 marks]