Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.hl.TZ2.6
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 6 Adapted from N/A

Question

Using the substitution x=tanθ show that 101(x2+1)2dx=π40cos2θdθ.

[4]
a.

Hence find the value of 101(x2+1)2dx.

[3]
b.

Markscheme

let x=tanθ

dxdθ=sec2θ     (A1)

1(x2+1)2dx=sec2θ(tan2θ+1)2dθ     M1

 

Note:     The method mark is for an attempt to substitute for both x and dx.

 

=1sec2θdθ (or equivalent)     A1

when x=0, θ=0 and when x=1, θ=π4     M1

π40cos2θdθ    AG

[4 marks]

a.

(101(x2+1)2dx=π40cos2θdθ)=12π40(1+cos2θ)dθ   M1

=12[θ+sin2θ2]π40     A1

=π8+14     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options