Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 5 Reference code 17M.1.hl.TZ2.9
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 9 Adapted from N/A

Question

Consider the function f defined by f(x)=x2a2, xR where a is a positive constant.

The function g is defined by g(x)=xf(x) for |x|>a.

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y=f(x);

[2]
a.i.

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y=1f(x);

[4]
a.ii.

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y=|1f(x)|.

[2]
a.iii.

Find f(x)cosxdx.

[5]
b.

By finding g(x) explain why g is an increasing function.

[4]
c.

Markscheme

M17/5/MATHL/HP1/ENG/TZ2/09.a.i/M

A1 for correct shape

A1 for correct x and y intercepts and minimum point

[2 marks]

a.i.

M17/5/MATHL/HP1/ENG/TZ2/09.a.ii/M

A1 for correct shape

A1 for correct vertical asymptotes

A1 for correct implied horizontal asymptote

A1 for correct maximum point

[??? marks]

a.ii.

M17/5/MATHL/HP1/ENG/TZ2/09.a.iii/M

A1 for reflecting negative branch from (ii) in the x-axis

A1 for correctly labelled minimum point

[2 marks]

a.iii.

EITHER

attempt at integration by parts     (M1)

(x2a2)cosxdx=(x2a2)sinx2xsinxdx     A1A1

=(x2a2)sinx2[xcosx+cosxdx]     A1

=(x2a2)sinx+2xcos2sinx+c     A1

OR

(x2a2)cosxdx=x2cosxdxa2cosxdx

attempt at integration by parts     (M1)

x2cosxdx=x2sinx2xsinxdx     A1A1

=x2sinx2[xcosx+cosxdx]     A1

=x2sinx+2xcosx2sinx

a2cosxdx=a2sinx

(x2a2)cosxdx=(x2a2)sinx+2xcosx2sinx+c     A1

[5 marks]

b.

g(x)=x(x2a2)12

g(x)=(x2a2)12+12x(x2a2)12(2x)     M1A1A1

 

Note:     Method mark is for differentiating the product. Award A1 for each correct term.

 

g(x)=(x2a2)12+x2(x2a2)12

both parts of the expression are positive hence g(x) is positive     R1

and therefore g is an increasing function (for |x|>a)     AG

[4 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by parts.

View options