Date | May 2018 | Marks available | 4 | Reference code | 18M.1.hl.TZ2.8 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Use and Find | Question number | 8 | Adapted from | N/A |
Question
Use the substitution \(u = {x^{\frac{1}{2}}}\) to find \(\int {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \).
Hence find the value of \(\frac{1}{2}\int\limits_1^9 {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \), expressing your answer in the form arctan \(q\), where \(q \in \mathbb{Q}\).
Markscheme
\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{2}{x^{ - \frac{1}{2}}}\) (accept \({\text{d}}u = \frac{1}{2}{x^{ - \frac{1}{2}}}{\text{d}}x\) or equivalent) A1
substitution, leading to an integrand in terms of \(u\) M1
\(\int {\frac{{2u{\text{d}}u}}{{{u^3} + u}}} \) or equivalent A1
= 2 arctan \(\left( {\sqrt x } \right)\left( { + c} \right)\) A1
[4 marks]
\(\frac{1}{2}\int\limits_1^9 {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \) = arctan 3 − arctan 1 A1
tan(arctan 3 − arctan 1) = \(\frac{{3 - 1}}{{1 + 3 \times 1}}\) (M1)
tan(arctan 3 − arctan 1) = \(\frac{1}{2}\)
arctan 3 − arctan 1 = arctan \(\frac{1}{2}\) A1
[3 marks]