User interface language: English | Español

Date May 2015 Marks available 8 Reference code 15M.1.hl.TZ2.8
Level HL only Paper 1 Time zone TZ2
Command term Express and Find Question number 8 Adapted from N/A

Question

By using the substitution t=tanxt=tanx, find dx1+sin2xdx1+sin2x.

Express your answer in the form marctan(ntanx)+cmarctan(ntanx)+c, where mm, nn are constants to be determined.

Markscheme

EITHER

x=arctantx=arctant     (M1)

dxdt=11+t2dxdt=11+t2     A1

OR

t=tanxt=tanx

dtdx=sec2xdtdx=sec2x     (M1)

=1+tan2x=1+tan2x     A1

=1+t2=1+t2

THEN

sinx=t1+t2sinx=t1+t2     (A1)

 

Note:     This A1 is independent of the first two marks

 

dx1+sin2x=dt1+t21+(t1+t2)2dx1+sin2x=dt1+t21+(t1+t2)2     M1A1

 

Note:     Award M1 for attempting to obtain integral in terms of tt and dtdt

 

=dt(1+t2)+t2=dt1+2t2=dt(1+t2)+t2=dt1+2t2     A1

=12dt12+t2=12×112arctan(t12)=12dt12+t2=12×112arctan(t12)     A1

=22arctan(2tanx)(+c)=22arctan(2tanx)(+c)     A1

[8 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options