Date | May 2015 | Marks available | 8 | Reference code | 15M.1.hl.TZ2.8 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Express and Find | Question number | 8 | Adapted from | N/A |
Question
By using the substitution \(t = \tan x\), find \(\int {\frac{{{\text{d}}x}}{{1 + {{\sin }^2}x}}} \).
Express your answer in the form \(m\arctan (n\tan x) + c\), where \(m\), \(n\) are constants to be determined.
Markscheme
EITHER
\(x = \arctan t\) (M1)
\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{1}{{1 + {t^2}}}\) A1
OR
\(t = \tan x\)
\(\frac{{{\text{d}}t}}{{{\text{d}}x}} = {\sec ^2}x\) (M1)
\( = 1 + {\tan ^2}x\) A1
\( = 1 + {t^2}\)
THEN
\(\sin x = \frac{t}{{\sqrt {1 + {t^2}} }}\) (A1)
Note: This A1 is independent of the first two marks
\(\int {\frac{{{\text{d}}x}}{{1 + {{\sin }^2}x}} = \int {\frac{{\frac{{{\text{d}}t}}{{1 + {t^2}}}}}{{1 + {{\left( {\frac{t}{{\sqrt {1 + {t^2}} }}} \right)}^2}}}} } \) M1A1
Note: Award M1 for attempting to obtain integral in terms of \(t\) and \({\text{d}}t\)
\( = \int {\frac{{{\text{d}}t}}{{(1 + {t^2}) + {t^2}}} = \int {\frac{{{\text{d}}t}}{{1 + 2{t^2}}}} } \) A1
\( = \frac{1}{2}\int {\frac{{{\text{d}}t}}{{\frac{1}{2} + {t^2}}} = \frac{1}{2} \times \frac{1}{{\frac{1}{{\sqrt 2 }}}}\arctan \left( {\frac{t}{{\frac{1}{{\sqrt 2 }}}}} \right)} \) A1
\( = \frac{{\sqrt 2 }}{2}\arctan \left( {\sqrt 2 \tan x} \right)( + c)\) A1
[8 marks]