Date | May 2014 | Marks available | 4 | Reference code | 14M.2.hl.TZ2.14 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 14 | Adapted from | N/A |
Question
Particle A moves such that its velocity v ms−1, at time t seconds, is given by v(t)=t12+t4, t⩾.
Particle B moves such that its velocity v{\text{ m}}{{\text{s}}^{ - 1}} is related to its displacement s{\text{ m}}, by the equation v(s) = \arcsin \left( {\sqrt s } \right).
Sketch the graph of y = v(t). Indicate clearly the local maximum and write down its coordinates.
Use the substitution u = {t^2} to find \int {\frac{t}{{12 + {t^4}}}{\text{d}}t} .
Find the exact distance travelled by particle A between t = 0 and t = 6 seconds.
Give your answer in the form k\arctan (b),{\text{ }}k,{\text{ }}b \in \mathbb{R}.
Find the acceleration of particle B when s = 0.1{\text{ m}}.
Markscheme
(a) A1
A1 for correct shape and correct domain
(1.41,{\text{ }}0.0884){\text{ }}\left( {\sqrt 2 ,{\text{ }}\frac{{\sqrt 2 }}{{16}}} \right) A1
[2 marks]
EITHER
u = {t^2}
\frac{{{\text{d}}u}}{{{\text{d}}t}} = 2t A1
OR
t = {u^{\frac{1}{2}}}
\frac{{{\text{d}}t}}{{{\text{d}}u}} = \frac{1}{2}{u^{ - \frac{1}{2}}} A1
THEN
\int {\frac{t}{{12 + {t^4}}}{\text{d}}t = \frac{1}{2}\int {\frac{{{\text{d}}u}}{{12 + {u^2}}}} } M1
= \frac{1}{{2\sqrt {12} }}\arctan \left( {\frac{u}{{\sqrt {12} }}} \right)( + c) M1
= \frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)( + c) or equivalent A1
[4 marks]
\int_0^6 {\frac{t}{{12 + {t^4}}}{\text{d}}t} (M1)
= \left[ {\frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)} \right]_0^6 M1
= \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{36}}{{2\sqrt 3 }}} \right)} \right){\text{ }}\left( { = \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{18}}{{\sqrt 3 }}} \right)} \right)} \right){\text{ (m)}} A1
Note: Accept \frac{{\sqrt 3 }}{{12}}\arctan \left( {6\sqrt 3 } \right) or equivalent.
[3 marks]
\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{1}{{2\sqrt {s(1 - s)} }} (A1)
a = v\frac{{{\text{d}}v}}{{{\text{d}}s}}
a = \arcsin \left( {\sqrt s } \right) \times \frac{1}{{2\sqrt {s(1 - s)} }} (M1)
a = \arcsin \left( {\sqrt {0.1} } \right) \times \frac{1}{{2\sqrt {0.1 \times 0.9} }}
a = 0.536{\text{ (m}}{{\text{s}}^{ - 2}}) A1
[3 marks]