Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.2.hl.TZ2.14
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 14 Adapted from N/A

Question

Particle A moves such that its velocity v ms1, at time t seconds, is given by v(t)=t12+t4, t.

Particle B moves such that its velocity v{\text{ m}}{{\text{s}}^{ - 1}} is related to its displacement s{\text{ m}}, by the equation v(s) = \arcsin \left( {\sqrt s } \right).

Sketch the graph of y = v(t). Indicate clearly the local maximum and write down its coordinates.

[2]
a.

Use the substitution u = {t^2} to find \int {\frac{t}{{12 + {t^4}}}{\text{d}}t} .

[4]
b.

Find the exact distance travelled by particle A between t = 0 and t = 6 seconds.

Give your answer in the form k\arctan (b),{\text{ }}k,{\text{ }}b \in \mathbb{R}.

 

[3]
c.

Find the acceleration of particle B when s = 0.1{\text{ m}}.

[3]
d.

Markscheme

(a)
    A1

A1 for correct shape and correct domain

(1.41,{\text{ }}0.0884){\text{ }}\left( {\sqrt 2 ,{\text{ }}\frac{{\sqrt 2 }}{{16}}} \right)     A1

[2 marks]

a.

EITHER

u = {t^2}

\frac{{{\text{d}}u}}{{{\text{d}}t}} = 2t     A1

OR

t = {u^{\frac{1}{2}}}

\frac{{{\text{d}}t}}{{{\text{d}}u}} = \frac{1}{2}{u^{ - \frac{1}{2}}}     A1

THEN

\int {\frac{t}{{12 + {t^4}}}{\text{d}}t = \frac{1}{2}\int {\frac{{{\text{d}}u}}{{12 + {u^2}}}} }     M1

= \frac{1}{{2\sqrt {12} }}\arctan \left( {\frac{u}{{\sqrt {12} }}} \right)( + c)     M1

= \frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)( + c) or equivalent     A1

[4 marks]

b.

\int_0^6 {\frac{t}{{12 + {t^4}}}{\text{d}}t}     (M1)

= \left[ {\frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)} \right]_0^6     M1

= \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{36}}{{2\sqrt 3 }}} \right)} \right){\text{ }}\left( { = \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{18}}{{\sqrt 3 }}} \right)} \right)} \right){\text{ (m)}}     A1

 

Note:     Accept \frac{{\sqrt 3 }}{{12}}\arctan \left( {6\sqrt 3 } \right) or equivalent.

 

[3 marks]

c.

\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{1}{{2\sqrt {s(1 - s)} }}     (A1)

a = v\frac{{{\text{d}}v}}{{{\text{d}}s}}

a = \arcsin \left( {\sqrt s } \right) \times \frac{1}{{2\sqrt {s(1 - s)} }}     (M1)

a = \arcsin \left( {\sqrt {0.1} } \right) \times \frac{1}{{2\sqrt {0.1 \times 0.9} }}

a = 0.536{\text{ (m}}{{\text{s}}^{ - 2}})     A1

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options