User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.hl.TZ2.6
Level HL only Paper 1 Time zone TZ2
Command term Hence or otherwise and Find Question number 6 Adapted from N/A

Question

Consider the functions \(f,\,\,g,\) defined for \(x \in \mathbb{R}\), given by \(f\left( x \right) = {{\text{e}}^{ - x}}\,{\text{sin}}\,x\) and \(g\left( x \right) = {{\text{e}}^{ - x}}\,{\text{cos}}\,x\).

Find \(f'\left( x \right)\).

[2]
a.i.

Find \(g'\left( x \right)\).

[1]
a.ii.

Hence, or otherwise, find \(\int\limits_0^\pi  {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x} \).

[4]
b.

Markscheme

attempt at product rule      M1

\(f'\left( x \right) =  - {{\text{e}}^{ - x}}\,{\text{sin}}\,x + {{\text{e}}^{ - x}}\,{\text{cos}}\,x\)      A1

[2 marks]

a.i.

\(g'\left( x \right) =  - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - {{\text{e}}^{ - x}}\,{\text{sin}}\,x\)      A1

[1 mark]

a.ii.

METHOD 1

Attempt to add \(f'\left( x \right)\) and \(g'\left( x \right)\)      (M1)

\(f'\left( x \right) + g'\left( x \right) =  - 2{{\text{e}}^{ - x}}\,{\text{sin}}\,x\)    A1

\(\int\limits_0^\pi  {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x}  = \left[ { - \frac{{{{\text{e}}^{ - x}}}}{2}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)} \right]_0^\pi \) (or equivalent)      A1

Note: Condone absence of limits.

\( = \frac{1}{2}\left( {1 + {{\text{e}}^{ - \pi }}} \right)\)    A1

 

METHOD 2

\(I = \int {{{\text{e}}^{ - x}}} \,{\text{sin}}\,x\,{\text{d}}x\)

\( =  - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - \int {{{\text{e}}^{ - x}}} \,{\text{cos}}\,x\,{\text{d}}x\) OR \( =  - {{\text{e}}^{ - x}}\,{\text{sin}}\,x + \int {{{\text{e}}^{ - x}}} \,{\text{cos}}\,x\,{\text{d}}x\)     M1A1

\( =  - {{\text{e}}^{ - x}}\,{\text{sin}}\,x - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - \int {{{\text{e}}^{ - x}}} \,{\text{sin}}\,x\,{\text{d}}x\)

\(I = \frac{1}{2}{{\text{e}}^{ - x}}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)\)     A1

\(\int_0^\pi  {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x = \frac{1}{2}\left( {1 + {{\text{e}}^{ - \pi }}} \right)} \)    A1

[4 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Anti-differentiation with a boundary condition to determine the constant of integration.

View options