Date | May 2018 | Marks available | 4 | Reference code | 18M.1.hl.TZ2.6 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Hence or otherwise and Find | Question number | 6 | Adapted from | N/A |
Question
Consider the functions f,g, defined for x∈R, given by f(x)=e−xsinx and g(x)=e−xcosx.
Find f′(x).
Find g′(x).
Hence, or otherwise, find π∫0e−xsinxdx.
Markscheme
attempt at product rule M1
f′(x)=−e−xsinx+e−xcosx A1
[2 marks]
g′(x)=−e−xcosx−e−xsinx A1
[1 mark]
METHOD 1
Attempt to add f′(x) and g′(x) (M1)
f′(x)+g′(x)=−2e−xsinx A1
π∫0e−xsinxdx=[−e−x2(sinx+cosx)]π0 (or equivalent) A1
Note: Condone absence of limits.
=12(1+e−π) A1
METHOD 2
I=∫e−xsinxdx
=−e−xcosx−∫e−xcosxdx OR =−e−xsinx+∫e−xcosxdx M1A1
=−e−xsinx−e−xcosx−∫e−xsinxdx
I=12e−x(sinx+cosx) A1
∫π0e−xsinxdx=12(1+e−π) A1
[4 marks]