Date | November 2017 | Marks available | 7 | Reference code | 17N.2.hl.TZ0.8 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 8 | Adapted from | N/A |
Question
By using the substitution \({x^2} = 2\sec \theta \), show that \(\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }} = \frac{1}{4}\arccos \left( {\frac{2}{{{x^2}}}} \right) + c} \).
Markscheme
EITHER
\({x^2} = 2\sec \theta \)
\(2x\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = 2\sec \theta \tan \theta \) M1A1
\(\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }}} \)
\( = \int {\frac{{\sec \theta \tan \theta {\text{d}}\theta }}{{2\sec \theta \sqrt {4{{\sec }^2}\theta - 4} }}} \) M1A1
OR
\(x = \sqrt 2 {(\sec \theta )^{\frac{1}{2}}}{\text{ }}\left( { = \sqrt 2 {{(\cos \theta )}^{ - \frac{1}{2}}}} \right)\)
\(\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = \frac{{\sqrt 2 }}{2}{(\sec \theta )^{\frac{1}{2}}}\tan \theta {\text{ }}\left( { = \frac{{\sqrt 2 }}{2}{{(\cos \theta )}^{ - \frac{3}{2}}}\sin \theta } \right)\) M1A1
\(\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }}} \)
\( = \int {\frac{{\sqrt 2 {{(\sec \theta )}^{\frac{1}{2}}}\tan \theta {\text{d}}\theta }}{{2\sqrt 2 {{(\sec \theta )}^{\frac{1}{2}}}\sqrt {4{{\sec }^2}\theta - 4} }}{\text{ }}\left( { = \int {\frac{{\sqrt 2 {{(\cos \theta )}^{ - \frac{3}{2}}}\sin \theta {\text{d}}\theta }}{{2\sqrt 2 {{(\cos \theta )}^{ - \frac{1}{2}}}\sqrt {4{{\sec }^2}\theta - 4} }}} } \right)} \) M1A1
THEN
\( = \frac{1}{2}\int {\frac{{\tan \theta {\text{d}}\theta }}{{2\tan \theta }}} \) (M1)
\( = \frac{1}{4}\int {{\text{d}}\theta } \)
\( = \frac{\theta }{4} + c\) A1
\({x^2} = 2\sec \theta \Rightarrow \cos \theta = \frac{2}{{{x^2}}}\) M1
Note: This M1 may be seen anywhere, including a sketch of an appropriate triangle.
so \(\frac{\theta }{4} + c = \frac{1}{4}\arccos \left( {\frac{2}{{{x^2}}}} \right) + c\) AG
[7 marks]