User interface language: English | Español

Date November 2017 Marks available 7 Reference code 17N.2.hl.TZ0.8
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 8 Adapted from N/A

Question

By using the substitution x2=2secθx2=2secθ, show that dxxx44=14arccos(2x2)+cdxxx44=14arccos(2x2)+c.

Markscheme

EITHER

x2=2secθx2=2secθ

2xdxdθ=2secθtanθ2xdxdθ=2secθtanθ     M1A1

dxxx44dxxx44

=secθtanθdθ2secθ4sec2θ4=secθtanθdθ2secθ4sec2θ4     M1A1

OR

x=2(secθ)12 (=2(cosθ)12)x=2(secθ)12 (=2(cosθ)12)

dxdθ=22(secθ)12tanθ (=22(cosθ)32sinθ)dxdθ=22(secθ)12tanθ (=22(cosθ)32sinθ)     M1A1

dxxx44dxxx44

=2(secθ)12tanθdθ22(secθ)124sec2θ4 (=2(cosθ)32sinθdθ22(cosθ)124sec2θ4)=2(secθ)12tanθdθ22(secθ)124sec2θ4 (=2(cosθ)32sinθdθ22(cosθ)124sec2θ4)     M1A1

THEN

=12tanθdθ2tanθ=12tanθdθ2tanθ     (M1)

=14dθ=14dθ

=θ4+c=θ4+c     A1

x2=2secθcosθ=2x2x2=2secθcosθ=2x2     M1

 

Note:     This M1 may be seen anywhere, including a sketch of an appropriate triangle.

 

so θ4+c=14arccos(2x2)+c     AG

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by substitution.
Show 22 related questions

View options