User interface language: English | Español

Date May 2015 Marks available 6 Reference code 15M.1.hl.TZ2.5
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 5 Adapted from N/A

Question

Show that \(\int_1^2 {{x^3}\ln x{\text{d}}x = 4\ln 2 - \frac{{15}}{{16}}} \).

Markscheme

any attempt at integration by parts     M1

\(u = \ln x \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\)     (A1)

\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = {x^3} \Rightarrow v = \frac{{{x^4}}}{4}\)     (A1)

\( = \left[ {\frac{{{x^4}}}{4}\ln x} \right]_1^2 - \int_1^2 {\frac{{{x^3}}}{4}{\text{d}}x} \)     A1

 

Note:     Condone absence of limits at this stage.

 

\( = \left[ {\frac{{{x^4}}}{4}\ln x} \right]_1^2 - \left[ {\frac{{{x^4}}}{{16}}} \right]_1^2\)     A1

 

Note:     Condone absence of limits at this stage.

 

\( = 4\ln 2 - \left( {1 - \frac{1}{{16}}} \right)\)     A1

\( = 4\ln 2 - \frac{{15}}{{16}}\)     AG

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Core: Calculus » 6.7 » Integration by parts.

View options