Date | May 2015 | Marks available | 6 | Reference code | 15M.1.hl.TZ2.5 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 5 | Adapted from | N/A |
Question
Show that \(\int_1^2 {{x^3}\ln x{\text{d}}x = 4\ln 2 - \frac{{15}}{{16}}} \).
Markscheme
any attempt at integration by parts M1
\(u = \ln x \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\) (A1)
\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = {x^3} \Rightarrow v = \frac{{{x^4}}}{4}\) (A1)
\( = \left[ {\frac{{{x^4}}}{4}\ln x} \right]_1^2 - \int_1^2 {\frac{{{x^3}}}{4}{\text{d}}x} \) A1
Note: Condone absence of limits at this stage.
\( = \left[ {\frac{{{x^4}}}{4}\ln x} \right]_1^2 - \left[ {\frac{{{x^4}}}{{16}}} \right]_1^2\) A1
Note: Condone absence of limits at this stage.
\( = 4\ln 2 - \left( {1 - \frac{1}{{16}}} \right)\) A1
\( = 4\ln 2 - \frac{{15}}{{16}}\) AG
[6 marks]