DP Mathematics SL Questionbank

2.1
Path: |
Description
[N/A]Directly related questions
- 12M.1.sl.TZ1.9c: The graph of f is reflected in the line y=x to give the graph of g . Find g(x) .
- 10N.1.sl.TZ0.9b: The vector (3−1) translates the graph...
- 10M.1.sl.TZ1.7b: Write down the range of f−1 .
- 09N.1.sl.TZ0.7b: Find f−1(23) .
- 11M.2.sl.TZ2.1a: Find h(x) .
- 13M.1.sl.TZ2.10a: Write down the value of g(3) , of f′(3) , and of h″(2) .
- 17M.2.sl.TZ2.3b: On the grid above, sketch the graph of g.
- 17M.2.sl.TZ2.6c: The equation (f∘g)(x)=k has exactly two solutions, for...
- 17N.1.sl.TZ0.3c: On the grid, sketch the graph of f−1.
- 17N.1.sl.TZ0.5a: Find (g∘f)(x).
- 18M.1.sl.TZ1.3b: Write down the range of f −1.
- 18M.1.sl.TZ1.3c: On the grid above, sketch the graph of f −1.
- 18M.1.sl.TZ2.10b: Show that the graph of g has a gradient of 6 at P.
- 08M.1.sl.TZ1.7a: Find f−1(x) .
- 12M.1.sl.TZ1.9b: The graph of f is reflected in the line y=x to give the graph of g . (i) Write down...
- 10M.1.sl.TZ2.4a: Find f(π2) .
- 09N.1.sl.TZ0.1a: (i) Find g(0) . (ii) Find (f∘g)(0) .
- 11M.1.sl.TZ1.1a: Find (g∘f)(x) .
- 11M.1.sl.TZ1.1c: Find (f∘g−1)(5) .
- 13M.1.sl.TZ2.10c: find the y-coordinate of P.
- 13M.1.sl.TZ2.4a.ii: Write down the value of f−1(−1) .
- 14M.1.sl.TZ2.3a(ii): Write down the value of f−1(1).
- 15N.1.sl.TZ0.5a: Find f−1(x).
- 16M.1.sl.TZ1.1b: Find (f∘g)(x).
- 17M.1.sl.TZ1.2b: Find (f∘g)(7).
- 17N.1.sl.TZ0.5b: Given that limx→+∞(g∘f)(x)=−3, find the value of...
- 17N.1.sl.TZ0.3a: Write down the range of f.
- 18M.1.sl.TZ1.3a.ii: Write down the value of f −1 (1).
- 12M.1.sl.TZ2.2b: Find (f∘g)(1) .
- 12M.1.sl.TZ1.9a: Find p .
- 10N.1.sl.TZ0.9d: The vector (3−1) translates the graph...
- 10N.1.sl.TZ0.9c: The vector (3−1) translates the graph...
- 13M.2.sl.TZ1.9c: Find the range of f .
- 13M.1.sl.TZ2.1b: Find (f∘g)(1) .
- 14M.1.sl.TZ2.3a(i): Write down the value of f(−3).
- 14N.2.sl.TZ0.1a: Find (f∘g)(x).
- 15M.2.sl.TZ1.10c: Let g(x)=ln(f(x)) and f(2)=3. Find g′(2).
- 17M.2.sl.TZ1.10b.ii: Hence, find the area of the region enclosed by the graphs of h and h−1.
- 17M.2.sl.TZ2.6a: Show that (f∘g)(x)=x4−4x2+3.
- 18M.1.sl.TZ1.1a: Write down f (14).
- 18M.1.sl.TZ2.10a.i: Write down f′(2).
- 18M.1.sl.TZ2.10c: Let L2 be the tangent to the graph of g at P. L1 intersects L2 at the point Q. Find the...
- 12M.1.sl.TZ2.2a: Find f−1(x) .
- 09N.1.sl.TZ0.1b: Find f−1(x) .
- 11M.1.sl.TZ1.1b: Write down g−1(x) .
- 11M.2.sl.TZ2.1b: Find h−1(x) .
- 13M.1.sl.TZ2.1a: Find f−1(x) .
- 13N.1.sl.TZ0.8a: Find f−1(x).
- 09N.1.sl.TZ0.7a: Given that f−1(1)=8 , find the value of k .
- 09M.2.sl.TZ1.3a: Find an expression for h(x) .
- SPNone.2.sl.TZ0.9b(i), (ii) and (iii): (i) Sketch the graph of h for −4≤x≤4 and −5≤y≤8 , including any...
- 13N.1.sl.TZ0.8e: Given that h−1(a)=3, find the value of a.
- 15N.1.sl.TZ0.5b: Let g be a function so that (f∘g)(x)=8x6. Find g(x).
- 15M.1.sl.TZ1.4b: Find (f∘f)(−1).
- 16M.1.sl.TZ2.6a: Write h(x) in the form asin(bx), where a, b∈Z.
- 18M.1.sl.TZ1.1c: Find g−1(x).
- 18M.1.sl.TZ1.3a.i: Write down the value of f (0).
- 08N.1.sl.TZ0.4b: Write down the range of f−1 .
- 08N.1.sl.TZ0.4c: Find f−1(x) .
- 10M.1.sl.TZ1.7c: Let g(x)=log3x , for x>0 . Find the value of (f−1∘g)(2) ,...
- 10M.1.sl.TZ2.4b: Find (g∘f)(π2) .
- 09M.1.sl.TZ1.6a: (i) Show that f−1(x)=lnx−3 . (ii) Write down the domain of f−1 .
- 09M.1.sl.TZ2.1a: Find g−1(x) .
- 13M.1.sl.TZ1.5b: Let g be a function such that g−1 exists for all real numbers. Given that...
- 13M.2.sl.TZ1.9a: Write down f(0) .
- 11N.2.sl.TZ0.1b: Find (f∘g)(x) .
- 16M.1.sl.TZ2.6b: Hence find the range of h.
- 17M.1.sl.TZ1.2a: Find f−1(x).
- 17M.2.sl.TZ1.10c: Let d be the vertical distance from a point on the graph of h to the line y=x....
- 17M.2.sl.TZ2.3c: Write down the domain of g.
- 10N.1.sl.TZ0.9a: Find (f∘g)(x) .
- 10M.1.sl.TZ1.7a: Show that f−1(x)=32x .
- 10M.1.sl.TZ2.4c: Given that (g∘f)(x) can be written as cos(kx) , find the value of k,...
- 09M.2.sl.TZ1.10e: Write down the range of values for the gradient of f .
- SPNone.2.sl.TZ0.9a: Find h−1(x) .
- 11N.2.sl.TZ0.1c: Find (f∘g)(3.5) .
- 13M.1.sl.TZ2.4a.i: Write down the value of f(2).
- 14M.1.sl.TZ2.3b: Find the domain of f−1.
- 13N.1.sl.TZ0.8b: Show that (g∘f−1)(x)=5x+2.
- 15M.1.sl.TZ1.4a: Find f−1(−1).
- 16M.1.sl.TZ1.1a: Write down g(2).
- 16M.1.sl.TZ1.1c: Find f−1(x).
- 16N.2.sl.TZ0.1a: Find f(8).
- 17M.2.sl.TZ1.10b.i: Find ∫3.310.111(h(x)−x)dx.
- 17M.2.sl.TZ2.3a: Write down the range of f.
- 17N.1.sl.TZ0.3b.ii: Write down f−1(2).
- 18M.1.sl.TZ1.1b: Find (g∘f) (14).
- 18M.1.sl.TZ2.10a.ii: Find f(2).
- 08M.1.sl.TZ1.7b: Let g(x)=ex . Find (g∘f)(x) , giving your answer in the form...
- 08M.1.sl.TZ2.5b(i) and (ii): Let g(x)=f(x+3) . (i) Find g(−3) . (ii) Describe fully the transformation...
- 09M.1.sl.TZ2.1b: Find (f∘g)(4) .
- SPNone.2.sl.TZ0.10a(i), (ii) and (iii): Jane thinks that the function f(t)=−0.25t3−2.32t2+1.93t+106 is a suitable...
- 11N.2.sl.TZ0.1a: Find f−1(x) .
- 13M.1.sl.TZ1.5a: Find f−1(2) .
- 13M.1.sl.TZ1.10a: Find the value of f(0) .
- 16N.2.sl.TZ0.1b: Find (g∘f)(x).
- 16N.2.sl.TZ0.1c: Solve (g∘f)(x)=0.
- 17M.2.sl.TZ2.6b: On the following grid, sketch the graph of (f∘g)(x), for...
- 17N.1.sl.TZ0.3b.i: Write down f(2);
Sub sections and their related questions
Concept of function f:x↦f(x) .
- 08N.1.sl.TZ0.4b: Write down the range of f−1 .
- 08M.1.sl.TZ2.5b(i) and (ii): Let g(x)=f(x+3) . (i) Find g(−3) . (ii) Describe fully the transformation...
- 09N.1.sl.TZ0.1a: (i) Find g(0) . (ii) Find (f∘g)(0) .
- SPNone.2.sl.TZ0.10a(i), (ii) and (iii): Jane thinks that the function f(t)=−0.25t3−2.32t2+1.93t+106 is a suitable...
- 13M.1.sl.TZ1.10a: Find the value of f(0) .
- 13M.2.sl.TZ1.9a: Write down f(0) .
- 13M.2.sl.TZ1.9c: Find the range of f .
- 13M.1.sl.TZ2.4a.i: Write down the value of f(2).
- 13M.1.sl.TZ2.10a: Write down the value of g(3) , of f′(3) , and of h″(2) .
- 13M.1.sl.TZ2.10c: find the y-coordinate of P.
- 14M.1.sl.TZ2.3a(ii): Write down the value of f−1(1).
- 14M.1.sl.TZ2.3a(i): Write down the value of f(−3).
- 14M.1.sl.TZ2.3b: Find the domain of f−1.
- 16M.1.sl.TZ1.1a: Write down g(2).
- 16M.1.sl.TZ1.1b: Find (f∘g)(x).
- 16M.1.sl.TZ1.1c: Find f−1(x).
- 17M.2.sl.TZ2.3a: Write down the range of f.
- 17M.2.sl.TZ2.3b: On the grid above, sketch the graph of g.
- 17M.2.sl.TZ2.3c: Write down the domain of g.
- 17N.1.sl.TZ0.3a: Write down the range of f.
- 17N.1.sl.TZ0.3b.i: Write down f(2);
- 17N.1.sl.TZ0.3b.ii: Write down f−1(2).
- 17N.1.sl.TZ0.3c: On the grid, sketch the graph of f−1.
- 18M.1.sl.TZ1.1a: Write down f (14).
- 18M.1.sl.TZ1.1b: Find (g∘f) (14).
- 18M.1.sl.TZ1.1c: Find g−1(x).
- 18M.1.sl.TZ1.3a.i: Write down the value of f (0).
- 18M.1.sl.TZ1.3a.ii: Write down the value of f −1 (1).
- 18M.1.sl.TZ1.3b: Write down the range of f −1.
- 18M.1.sl.TZ1.3c: On the grid above, sketch the graph of f −1.
Domain, range; image (value).
- 08N.1.sl.TZ0.4b: Write down the range of f−1 .
- 10M.1.sl.TZ1.7a: Show that f−1(x)=32x .
- 10M.1.sl.TZ1.7b: Write down the range of f−1 .
- 10M.1.sl.TZ1.7c: Let g(x)=log3x , for x>0 . Find the value of (f−1∘g)(2) ,...
- 09M.1.sl.TZ1.6a: (i) Show that f−1(x)=lnx−3 . (ii) Write down the domain of f−1 .
- 09M.2.sl.TZ1.10e: Write down the range of values for the gradient of f .
- SPNone.2.sl.TZ0.10a(i), (ii) and (iii): Jane thinks that the function f(t)=−0.25t3−2.32t2+1.93t+106 is a suitable...
- 13M.1.sl.TZ1.5a: Find f−1(2) .
- 13M.1.sl.TZ1.10a: Find the value of f(0) .
- 13M.2.sl.TZ1.9a: Write down f(0) .
- 13M.2.sl.TZ1.9c: Find the range of f .
- 13M.1.sl.TZ2.4a.i: Write down the value of f(2).
- 13M.1.sl.TZ2.10a: Write down the value of g(3) , of f′(3) , and of h″(2) .
- 13M.1.sl.TZ2.10c: find the y-coordinate of P.
- 13M.1.sl.TZ2.4a.ii: Write down the value of f−1(−1) .
- 14M.1.sl.TZ2.3a(ii): Write down the value of f−1(1).
- 14M.1.sl.TZ2.3a(i): Write down the value of f(−3).
- 14M.1.sl.TZ2.3b: Find the domain of f−1.
- 13N.1.sl.TZ0.8e: Given that h−1(a)=3, find the value of a.
- 16M.1.sl.TZ1.1a: Write down g(2).
- 16M.1.sl.TZ1.1b: Find (f∘g)(x).
- 16M.1.sl.TZ1.1c: Find f−1(x).
- 16N.2.sl.TZ0.1a: Find f(8).
- 17M.2.sl.TZ2.3a: Write down the range of f.
- 17M.2.sl.TZ2.3b: On the grid above, sketch the graph of g.
- 17M.2.sl.TZ2.3c: Write down the domain of g.
- 17N.1.sl.TZ0.3a: Write down the range of f.
- 17N.1.sl.TZ0.3b.i: Write down f(2);
- 17N.1.sl.TZ0.3b.ii: Write down f−1(2).
- 17N.1.sl.TZ0.3c: On the grid, sketch the graph of f−1.
- 18M.1.sl.TZ1.1a: Write down f (14).
- 18M.1.sl.TZ1.1b: Find (g∘f) (14).
- 18M.1.sl.TZ1.1c: Find g−1(x).
- 18M.1.sl.TZ1.3a.i: Write down the value of f (0).
- 18M.1.sl.TZ1.3a.ii: Write down the value of f −1 (1).
- 18M.1.sl.TZ1.3b: Write down the range of f −1.
- 18M.1.sl.TZ1.3c: On the grid above, sketch the graph of f −1.
Composite functions.
- 12M.1.sl.TZ2.2a: Find f−1(x) .
- 12M.1.sl.TZ2.2b: Find (f∘g)(1) .
- 08M.1.sl.TZ1.7b: Let g(x)=ex . Find (g∘f)(x) , giving your answer in the form...
- 10N.1.sl.TZ0.9a: Find (f∘g)(x) .
- 10N.1.sl.TZ0.9b: The vector (3−1) translates the graph...
- 10N.1.sl.TZ0.9c: The vector (3−1) translates the graph...
- 10N.1.sl.TZ0.9d: The vector (3−1) translates the graph...
- 10M.1.sl.TZ1.7a: Show that f−1(x)=32x .
- 10M.1.sl.TZ1.7b: Write down the range of f−1 .
- 10M.1.sl.TZ1.7c: Let g(x)=log3x , for x>0 . Find the value of (f−1∘g)(2) ,...
- 10M.1.sl.TZ2.4a: Find f(π2) .
- 10M.1.sl.TZ2.4b: Find (g∘f)(π2) .
- 10M.1.sl.TZ2.4c: Given that (g∘f)(x) can be written as cos(kx) , find the value of k,...
- 09N.1.sl.TZ0.1a: (i) Find g(0) . (ii) Find (f∘g)(0) .
- 09M.2.sl.TZ1.3a: Find an expression for h(x) .
- 09M.1.sl.TZ2.1b: Find (f∘g)(4) .
- 11N.2.sl.TZ0.1a: Find f−1(x) .
- 11N.2.sl.TZ0.1c: Find (f∘g)(3.5) .
- 11M.1.sl.TZ1.1a: Find (g∘f)(x) .
- 11M.1.sl.TZ1.1b: Write down g−1(x) .
- 11M.1.sl.TZ1.1c: Find (f∘g−1)(5) .
- 11M.2.sl.TZ2.1a: Find h(x) .
- 11M.2.sl.TZ2.1b: Find h−1(x) .
- 13M.1.sl.TZ1.5b: Let g be a function such that g−1 exists for all real numbers. Given that...
- 13M.1.sl.TZ2.1b: Find (f∘g)(1) .
- 11N.2.sl.TZ0.1b: Find (f∘g)(x) .
- 13N.1.sl.TZ0.8b: Show that (g∘f−1)(x)=5x+2.
- 14N.2.sl.TZ0.1a: Find (f∘g)(x).
- 15M.1.sl.TZ1.4b: Find (f∘f)(−1).
- 15M.2.sl.TZ1.10c: Let g(x)=ln(f(x)) and f(2)=3. Find g′(2).
- 15N.1.sl.TZ0.5b: Let g be a function so that (f∘g)(x)=8x6. Find g(x).
- 16M.1.sl.TZ1.1a: Write down g(2).
- 16M.1.sl.TZ1.1b: Find (f∘g)(x).
- 16M.1.sl.TZ1.1c: Find f−1(x).
- 16M.1.sl.TZ2.6a: Write h(x) in the form asin(bx), where a, b∈Z.
- 16M.1.sl.TZ2.6b: Hence find the range of h.
- 16N.2.sl.TZ0.1b: Find (g∘f)(x).
- 16N.2.sl.TZ0.1c: Solve (g∘f)(x)=0.
- 17M.1.sl.TZ1.2a: Find f−1(x).
- 17M.1.sl.TZ1.2b: Find (f∘g)(7).
- 17M.2.sl.TZ2.6a: Show that (f∘g)(x)=x4−4x2+3.
- 17M.2.sl.TZ2.6b: On the following grid, sketch the graph of (f∘g)(x), for...
- 17M.2.sl.TZ2.6c: The equation (f∘g)(x)=k has exactly two solutions, for...
- 17N.1.sl.TZ0.5a: Find (g∘f)(x).
- 17N.1.sl.TZ0.5b: Given that limx→+∞(g∘f)(x)=−3, find the value of...
- 18M.1.sl.TZ2.10a.i: Write down f′(2).
- 18M.1.sl.TZ2.10a.ii: Find f(2).
- 18M.1.sl.TZ2.10b: Show that the graph of g has a gradient of 6 at P.
- 18M.1.sl.TZ2.10c: Let L2 be the tangent to the graph of g at P. L1 intersects L2 at the point Q. Find the...
Identity function. Inverse function f−1 .
- 12M.1.sl.TZ2.2a: Find f−1(x) .
- 12M.1.sl.TZ2.2b: Find (f∘g)(1) .
- 08N.1.sl.TZ0.4c: Find f−1(x) .
- 08M.1.sl.TZ1.7a: Find f−1(x) .
- 12M.1.sl.TZ1.9a: Find p .
- 12M.1.sl.TZ1.9b: The graph of f is reflected in the line y=x to give the graph of g . (i) Write down...
- 12M.1.sl.TZ1.9c: The graph of f is reflected in the line y=x to give the graph of g . Find g(x) .
- 10M.1.sl.TZ1.7a: Show that f−1(x)=32x .
- 10M.1.sl.TZ1.7b: Write down the range of f−1 .
- 10M.1.sl.TZ1.7c: Let g(x)=log3x , for x>0 . Find the value of (f−1∘g)(2) ,...
- 09N.1.sl.TZ0.1b: Find f−1(x) .
- 09N.1.sl.TZ0.7a: Given that f−1(1)=8 , find the value of k .
- 09N.1.sl.TZ0.7b: Find f−1(23) .
- 09M.1.sl.TZ1.6a: (i) Show that f−1(x)=lnx−3 . (ii) Write down the domain of f−1 .
- 09M.1.sl.TZ2.1a: Find g−1(x) .
- SPNone.2.sl.TZ0.9a: Find h−1(x) .
- 11N.2.sl.TZ0.1a: Find f−1(x) .
- 11N.2.sl.TZ0.1c: Find (f∘g)(3.5) .
- 11M.1.sl.TZ1.1a: Find (g∘f)(x) .
- 11M.1.sl.TZ1.1b: Write down g−1(x) .
- 11M.1.sl.TZ1.1c: Find (f∘g−1)(5) .
- 11M.2.sl.TZ2.1a: Find h(x) .
- 11M.2.sl.TZ2.1b: Find h−1(x) .
- 13M.1.sl.TZ1.5a: Find f−1(2) .
- 13M.1.sl.TZ2.1a: Find f−1(x) .
- 11N.2.sl.TZ0.1b: Find (f∘g)(x) .
- 13M.1.sl.TZ2.4a.ii: Write down the value of f−1(−1) .
- 14M.1.sl.TZ2.3a(ii): Write down the value of f−1(1).
- 14M.1.sl.TZ2.3a(i): Write down the value of f(−3).
- 14M.1.sl.TZ2.3b: Find the domain of f−1.
- 13N.1.sl.TZ0.8a: Find f−1(x).
- 13N.1.sl.TZ0.8e: Given that h−1(a)=3, find the value of a.
- 15M.1.sl.TZ1.4a: Find f−1(−1).
- 15N.1.sl.TZ0.5a: Find f−1(x).
- 16M.1.sl.TZ1.1a: Write down g(2).
- 16M.1.sl.TZ1.1b: Find (f∘g)(x).
- 16M.1.sl.TZ1.1c: Find f−1(x).
- 17M.1.sl.TZ1.2a: Find f−1(x).
- 17M.1.sl.TZ1.2b: Find (f∘g)(7).
- 17M.2.sl.TZ1.10b.i: Find ∫3.310.111(h(x)−x)dx.
- 17M.2.sl.TZ1.10b.ii: Hence, find the area of the region enclosed by the graphs of h and h−1.
- 17M.2.sl.TZ1.10c: Let d be the vertical distance from a point on the graph of h to the line y=x....
- 17N.1.sl.TZ0.3a: Write down the range of f.
- 17N.1.sl.TZ0.3b.i: Write down f(2);
- 17N.1.sl.TZ0.3b.ii: Write down f−1(2).
- 17N.1.sl.TZ0.3c: On the grid, sketch the graph of f−1.
- 18M.1.sl.TZ1.3a.i: Write down the value of f (0).
- 18M.1.sl.TZ1.3a.ii: Write down the value of f −1 (1).
- 18M.1.sl.TZ1.3b: Write down the range of f −1.
- 18M.1.sl.TZ1.3c: On the grid above, sketch the graph of f −1.