User interface language: English | Español

Date November 2015 Marks available 3 Reference code 15N.1.sl.TZ0.5
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 5 Adapted from N/A

Question

Let \(f(x) = {(x - 5)^3}\), for \(x \in \mathbb{R}\).

Find \({f^{ - 1}}(x)\).

[3]
a.

Let \(g\) be a function so that \((f \circ g)(x) = 8{x^6}\). Find \(g(x)\).

[3]
b.

Markscheme

interchanging \(x\) and \(y\) (seen anywhere)     (M1)

eg\(\;\;\;x = {(y - 5)^3}\)

evidence of correct manipulation     (A1)

eg\(\;\;\;y - 5 = \sqrt[3]{x}\)

\({f^{ - 1}}(x) = \sqrt[3]{x} + 5\;\;\;({\text{accept }}5 + {x^{\frac{1}{3}}},{\text{ }}y = 5 + \sqrt[3]{x})\)     A1     N2

 

Notes:     If working shown, and they do not interchange \(x\) and \(y\), award A1A1M0 for \(\sqrt[3]{y} + 5\).

If no working shown, award N1 for \(\sqrt[3]{y} + 5\).

 

a.

METHOD 1

attempt to form composite (in any order)     (M1)

eg\(\;\;\;g\left( {{{(x - 5)}^3}} \right),{\text{ }}{\left( {g(x) - 5} \right)^3} = 8{x^6},{\text{ }}f(2{x^2} + 5)\)

correct working     (A1)

eg\(\;\;\;g - 5 = 2{x^2},{\text{ }}{\left( {(2{x^2} + 5) - 5} \right)^3}\)

\(g(x) = 2{x^2} + 5\)     A1     N2

METHOD 2

recognising inverse relationship     (M1)

eg\(\;\;\;{f^{ - 1}}(8{x^6}) = g(x),{\text{ }}{f^{ - 1}}(f \circ g)(x) = {f^{ - 1}}(8{x^6})\)

correct working

eg\(\;\;\;g(x) = \sqrt[3]{{(8{x^6})}} + 5\)     (A1)

\(g(x) = 2{x^2} + 5\)     A1     N2

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Functions and equations » 2.1 » Identity function. Inverse function \({f^{ - 1}}\) .
Show 45 related questions

View options