Date | November 2015 | Marks available | 3 | Reference code | 15N.1.sl.TZ0.5 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Let \(f(x) = {(x - 5)^3}\), for \(x \in \mathbb{R}\).
Find \({f^{ - 1}}(x)\).
Let \(g\) be a function so that \((f \circ g)(x) = 8{x^6}\). Find \(g(x)\).
Markscheme
interchanging \(x\) and \(y\) (seen anywhere) (M1)
eg\(\;\;\;x = {(y - 5)^3}\)
evidence of correct manipulation (A1)
eg\(\;\;\;y - 5 = \sqrt[3]{x}\)
\({f^{ - 1}}(x) = \sqrt[3]{x} + 5\;\;\;({\text{accept }}5 + {x^{\frac{1}{3}}},{\text{ }}y = 5 + \sqrt[3]{x})\) A1 N2
Notes: If working shown, and they do not interchange \(x\) and \(y\), award A1A1M0 for \(\sqrt[3]{y} + 5\).
If no working shown, award N1 for \(\sqrt[3]{y} + 5\).
|
METHOD 1
attempt to form composite (in any order) (M1)
eg\(\;\;\;g\left( {{{(x - 5)}^3}} \right),{\text{ }}{\left( {g(x) - 5} \right)^3} = 8{x^6},{\text{ }}f(2{x^2} + 5)\)
correct working (A1)
eg\(\;\;\;g - 5 = 2{x^2},{\text{ }}{\left( {(2{x^2} + 5) - 5} \right)^3}\)
\(g(x) = 2{x^2} + 5\) A1 N2
METHOD 2
recognising inverse relationship (M1)
eg\(\;\;\;{f^{ - 1}}(8{x^6}) = g(x),{\text{ }}{f^{ - 1}}(f \circ g)(x) = {f^{ - 1}}(8{x^6})\)
correct working
eg\(\;\;\;g(x) = \sqrt[3]{{(8{x^6})}} + 5\) (A1)
\(g(x) = 2{x^2} + 5\) A1 N2