Date | May 2013 | Marks available | 3 | Reference code | 13M.1.sl.TZ2.1 |
Level | SL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 1 | Adapted from | N/A |
Question
Let \(f(x) = 4x - 2\) and \(g(x) = - 2{x^2} + 8\) .
Find \({f^{ - 1}}(x)\) .
Find \((f \circ g)(1)\) .
Markscheme
interchanging \(x\) and \(y\) (seen anywhere) (M1)
eg \(x = 4y - 2\)
evidence of correct manipulation (A1)
eg \(x + 2 = 4y\)
\({f^{ - 1}}(x) = \frac{{x + 2}}{4}\) (accept \(y = \frac{{x + 2}}{4}\) , \(\frac{{x + 2}}{4}\) , \({f^{ - 1}}(x) = \frac{1}{4}x + \frac{1}{2}\) A1 N2
[3 marks]
METHOD 1
attempt to substitute \(1\) into \(g(x)\) (M1)
eg \(g(1) = - 2 \times {1^2} + 8\)
\(g(1) = 6\) (A1)
\(f(6) = 22\) A1 N3
METHOD 2
attempt to form composite function (in any order) (M1)
eg \((f \circ g)(x) = 4( - 2{x^2} + 8) - 2\) \(( = - 8{x^2} + 30)\)
correct substitution
eg \((f \circ g)(1) = 4( - 2 \times {1^2} + 8) - 2\) , \( - 8 + 30\)
\(f(6) = 22\) A1 N3
[3 marks]