User interface language: English | Español

Date None Specimen Marks available 7 Reference code SPNone.2.sl.TZ0.9
Level SL only Paper 2 Time zone TZ0
Command term Sketch and Write down Question number 9 Adapted from N/A

Question

Let h(x)=2x1x+1h(x)=2x1x+1 , x1x1 .

Find h1(x)h1(x) .

[4]
a.

(i)     Sketch the graph of h for 4x44x4 and 5y85y8 , including any asymptotes.

(ii)    Write down the equations of the asymptotes.

(iii)   Write down the x-intercept of the graph of h .

[7]
b(i), (ii) and (iii).

Let R be the region in the first quadrant enclosed by the graph of h , the x-axis and the line x=3x=3.

(i)     Find the area of R.

(ii)    Write down an expression for the volume obtained when R is revolved through 360360 about the x-axis.

[5]
c(i) and (ii).

Markscheme

y=2x1x+1y=2x1x+1

interchanging x and y (seen anywhere)     M1

e.g. x=2y1y+1x=2y1y+1

correct working     A1

e.g. xy+x=2y1xy+x=2y1

collecting terms     A1

e.g. x+1=2yxyx+1=2yxy , x+1=y(2x)x+1=y(2x)

h1(x)=x+12xh1(x)=x+12x     A1     N2

[4 marks]

a.


     A1A1A1A1     N4

Note: Award A1 for approximately correct intercepts, A1 for correct shape, A1 for asymptotes, A1 for approximately correct domain and range.

(ii) x=1x=1 , y=2y=2     A1A1     N2

(iii) 1212     A1     N1

[7 marks]

b(i), (ii) and (iii).

(i) area=2.06area=2.06     A2     N2

(ii) attempt to substitute into volume formula (do not accept πbay2dxπbay2dx )     M1

volume =π312(2x1x+1)2dx=π312(2x1x+1)2dx     A2     N3

[5 marks]

c(i) and (ii).

Examiners report

[N/A]
a.
[N/A]
b(i), (ii) and (iii).
[N/A]
c(i) and (ii).

Syllabus sections

Topic 2 - Functions and equations » 2.2 » Function graphing skills.
Show 37 related questions

View options