DP Mathematics SL Questionbank
Identity function. Inverse function \({f^{ - 1}}\) .
Path: |
Description
[N/A]Directly related questions
- 12M.1.sl.TZ1.9c: The graph of \(f\) is reflected in the line \(y = x\) to give the graph of \(g\) . Find \(g(x)\) .
- 10M.1.sl.TZ1.7b: Write down the range of \({f^{ - 1}}\) .
- 09N.1.sl.TZ0.7b: Find \({f^{ - 1}}\left( {\frac{2}{3}} \right)\) .
- 11M.2.sl.TZ2.1a: Find \(h(x)\) .
- 17N.1.sl.TZ0.3c: On the grid, sketch the graph of \({f^{ - 1}}\).
- 18M.1.sl.TZ1.3b: Write down the range of f −1.
- 18M.1.sl.TZ1.3c: On the grid above, sketch the graph of f −1.
- 08M.1.sl.TZ1.7a: Find \({f^{ - 1}}(x)\) .
- 12M.1.sl.TZ1.9b: The graph of f is reflected in the line \(y = x\) to give the graph of g . (i) Write down...
- 11M.1.sl.TZ1.1a: Find \((g \circ f)(x)\) .
- 11M.1.sl.TZ1.1c: Find \((f \circ {g^{ - 1}})(5)\) .
- 13M.1.sl.TZ2.4a.ii: Write down the value of \({f^{ - 1}}( - 1)\) .
- 14M.1.sl.TZ2.3a(ii): Write down the value of \({f^{ - 1}}(1)\).
- 15N.1.sl.TZ0.5a: Find \({f^{ - 1}}(x)\).
- 16M.1.sl.TZ1.1b: Find \((f \circ g)(x)\).
- 17M.1.sl.TZ1.2b: Find \((f \circ g)(7)\).
- 17N.1.sl.TZ0.3a: Write down the range of \(f\).
- 18M.1.sl.TZ1.3a.ii: Write down the value of f −1 (1).
- 12M.1.sl.TZ2.2b: Find \((f \circ g)(1)\) .
- 12M.1.sl.TZ1.9a: Find p .
- 14M.1.sl.TZ2.3a(i): Write down the value of \(f( - 3)\).
- 17M.2.sl.TZ1.10b.ii: Hence, find the area of the region enclosed by the graphs of \(h\) and \({h^{ - 1}}\).
- 12M.1.sl.TZ2.2a: Find \({f^{ - 1}}(x)\) .
- 09N.1.sl.TZ0.1b: Find \({f^{ - 1}}(x)\) .
- 11M.1.sl.TZ1.1b: Write down \({g^{ - 1}}(x)\) .
- 11M.2.sl.TZ2.1b: Find \({h^{ - 1}}(x)\) .
- 13M.1.sl.TZ2.1a: Find \({f^{ - 1}}(x)\) .
- 13N.1.sl.TZ0.8a: Find \({f^{ - 1}}(x)\).
- 09N.1.sl.TZ0.7a: Given that \({f^{ - 1}}(1) = 8\) , find the value of \(k\) .
- 13N.1.sl.TZ0.8e: Given that \({h^{ - 1}}(a) = 3\), find the value of \(a\).
- 18M.1.sl.TZ1.3a.i: Write down the value of f (0).
- 08N.1.sl.TZ0.4c: Find \({f^{ - 1}}(x)\) .
- 10M.1.sl.TZ1.7c: Let \(g(x) = {\log _3}x\) , for \(x > 0\) . Find the value of \(({f^{ - 1}} \circ g)(2)\) ,...
- 09M.1.sl.TZ1.6a: (i) Show that \({f^{ - 1}}(x) = \ln x - 3\) . (ii) Write down the domain of \({f^{ - 1}}\) .
- 09M.1.sl.TZ2.1a: Find \({g^{ - 1}}(x)\) .
- 11N.2.sl.TZ0.1b: Find \((f \circ g)(x)\) .
- 17M.1.sl.TZ1.2a: Find \({f^{ - 1}}(x)\).
- 17M.2.sl.TZ1.10c: Let \(d\) be the vertical distance from a point on the graph of \(h\) to the line \(y = x\)....
- 10M.1.sl.TZ1.7a: Show that \({f^{ - 1}}(x) = {3^{2x}}\) .
- SPNone.2.sl.TZ0.9a: Find \({h^{ - 1}}(x)\) .
- 11N.2.sl.TZ0.1c: Find \((f \circ g)(3.5)\) .
- 14M.1.sl.TZ2.3b: Find the domain of \({f^{ - 1}}\).
- 15M.1.sl.TZ1.4a: Find \({f^{ - 1}}( - 1)\).
- 16M.1.sl.TZ1.1a: Write down \(g(2)\).
- 16M.1.sl.TZ1.1c: Find \({f^{ - 1}}(x)\).
- 17M.2.sl.TZ1.10b.i: Find \(\int_{0.111}^{3.31} {\left( {h(x) - x} \right){\text{d}}x} \).
- 17N.1.sl.TZ0.3b.ii: Write down \({f^{ - 1}}(2)\).
- 11N.2.sl.TZ0.1a: Find \({f^{ - 1}}(x)\) .
- 13M.1.sl.TZ1.5a: Find \({f^{ - 1}}(2)\) .
- 17N.1.sl.TZ0.3b.i: Write down \(f(2)\);