DP Mathematics SL Questionbank
Composite functions.
Description
[N/A]Directly related questions
- 10N.1.sl.TZ0.9b: The vector \(\left( {\begin{array}{*{20}{c}}3\\{ - 1}\end{array}} \right)\) translates the graph...
- 10M.1.sl.TZ1.7b: Write down the range of \({f^{ - 1}}\) .
- 11M.2.sl.TZ2.1a: Find \(h(x)\) .
- 17M.2.sl.TZ2.6c: The equation \((f \circ g)(x) = k\) has exactly two solutions, for...
- 17N.1.sl.TZ0.5a: Find \((g \circ f)(x)\).
- 18M.1.sl.TZ2.10b: Show that the graph of g has a gradient of 6 at P.
- 10M.1.sl.TZ2.4a: Find \(f\left( {\frac{\pi }{2}} \right)\) .
- 09N.1.sl.TZ0.1a: (i) Find \(g(0)\) . (ii) Find \((f \circ g)(0)\) .
- 11M.1.sl.TZ1.1a: Find \((g \circ f)(x)\) .
- 11M.1.sl.TZ1.1c: Find \((f \circ {g^{ - 1}})(5)\) .
- 16M.1.sl.TZ1.1b: Find \((f \circ g)(x)\).
- 17M.1.sl.TZ1.2b: Find \((f \circ g)(7)\).
- 17N.1.sl.TZ0.5b: Given that \(\mathop {\lim }\limits_{x \to + \infty } (g \circ f)(x) = - 3\), find the value of...
- 12M.1.sl.TZ2.2b: Find \((f \circ g)(1)\) .
- 10N.1.sl.TZ0.9d: The vector \(\left( {\begin{array}{*{20}{c}}3\\{ - 1}\end{array}} \right)\) translates the graph...
- 10N.1.sl.TZ0.9c: The vector \(\left( {\begin{array}{*{20}{c}}3\\{ - 1}\end{array}} \right)\) translates the graph...
- 13M.1.sl.TZ2.1b: Find \((f \circ g)(1)\) .
- 15M.2.sl.TZ1.10c: Let \(g(x) = \ln \left( {f(x)} \right)\) and \(f(2) = 3\). Find \(g'(2)\).
- 14N.2.sl.TZ0.1a: Find \((f \circ g)(x)\).
- 17M.2.sl.TZ2.6a: Show that \((f \circ g)(x) = {x^4} - 4{x^2} + 3\).
- 18M.1.sl.TZ2.10a.i: Write down \(f'\left( 2 \right)\).
- 18M.1.sl.TZ2.10c: Let L2 be the tangent to the graph of g at P. L1 intersects L2 at the point Q. Find the...
- 12M.1.sl.TZ2.2a: Find \({f^{ - 1}}(x)\) .
- 11M.1.sl.TZ1.1b: Write down \({g^{ - 1}}(x)\) .
- 11M.2.sl.TZ2.1b: Find \({h^{ - 1}}(x)\) .
- 09M.2.sl.TZ1.3a: Find an expression for \(h(x)\) .
- 15M.1.sl.TZ1.4b: Find \((f \circ f)( - 1)\).
- 15N.1.sl.TZ0.5b: Let \(g\) be a function so that \((f \circ g)(x) = 8{x^6}\). Find \(g(x)\).
- 16M.1.sl.TZ2.6a: Write \(h(x)\) in the form \(a\sin (bx)\), where \(a,{\text{ }}b \in \mathbb{Z}\).
- 10M.1.sl.TZ1.7c: Let \(g(x) = {\log _3}x\) , for \(x > 0\) . Find the value of \(({f^{ - 1}} \circ g)(2)\) ,...
- 10M.1.sl.TZ2.4b: Find \((g \circ f)\left( {\frac{\pi }{2}} \right)\) .
- 13M.1.sl.TZ1.5b: Let \(g\) be a function such that \({g^{ - 1}}\) exists for all real numbers. Given that...
- 11N.2.sl.TZ0.1b: Find \((f \circ g)(x)\) .
- 16M.1.sl.TZ2.6b: Hence find the range of \(h\).
- 17M.1.sl.TZ1.2a: Find \({f^{ - 1}}(x)\).
- 10N.1.sl.TZ0.9a: Find \((f \circ g)(x)\) .
- 10M.1.sl.TZ1.7a: Show that \({f^{ - 1}}(x) = {3^{2x}}\) .
- 10M.1.sl.TZ2.4c: Given that \((g \circ f)(x)\) can be written as \(\cos (kx)\) , find the value of k,...
- 11N.2.sl.TZ0.1c: Find \((f \circ g)(3.5)\) .
- 13N.1.sl.TZ0.8b: Show that \(\left( {g \circ {f^{ - 1}}} \right)(x) = \frac{5}{{x + 2}}\).
- 16M.1.sl.TZ1.1a: Write down \(g(2)\).
- 16M.1.sl.TZ1.1c: Find \({f^{ - 1}}(x)\).
- 18M.1.sl.TZ2.10a.ii: Find \(f\left( 2 \right)\).
- 08M.1.sl.TZ1.7b: Let \(g(x) = {{\rm{e}}^x}\) . Find \((g \circ f)(x)\) , giving your answer in the form...
- 09M.1.sl.TZ2.1b: Find \((f \circ g)(4)\) .
- 11N.2.sl.TZ0.1a: Find \({f^{ - 1}}(x)\) .
- 16N.2.sl.TZ0.1b: Find \((g \circ f)(x)\).
- 16N.2.sl.TZ0.1c: Solve \((g \circ f)(x) = 0\).
- 17M.2.sl.TZ2.6b: On the following grid, sketch the graph of \((f \circ g)(x)\), for...