DP Mathematics SL Questionbank

Composite functions.
Description
[N/A]Directly related questions
- 10N.1.sl.TZ0.9b: The vector (3−1) translates the graph...
- 10M.1.sl.TZ1.7b: Write down the range of f−1 .
- 11M.2.sl.TZ2.1a: Find h(x) .
- 17M.2.sl.TZ2.6c: The equation (f∘g)(x)=k has exactly two solutions, for...
- 17N.1.sl.TZ0.5a: Find (g∘f)(x).
- 18M.1.sl.TZ2.10b: Show that the graph of g has a gradient of 6 at P.
- 10M.1.sl.TZ2.4a: Find f(π2) .
- 09N.1.sl.TZ0.1a: (i) Find g(0) . (ii) Find (f∘g)(0) .
- 11M.1.sl.TZ1.1a: Find (g∘f)(x) .
- 11M.1.sl.TZ1.1c: Find (f∘g−1)(5) .
- 16M.1.sl.TZ1.1b: Find (f∘g)(x).
- 17M.1.sl.TZ1.2b: Find (f∘g)(7).
- 17N.1.sl.TZ0.5b: Given that limx→+∞(g∘f)(x)=−3, find the value of...
- 12M.1.sl.TZ2.2b: Find (f∘g)(1) .
- 10N.1.sl.TZ0.9d: The vector (3−1) translates the graph...
- 10N.1.sl.TZ0.9c: The vector (3−1) translates the graph...
- 13M.1.sl.TZ2.1b: Find (f∘g)(1) .
- 15M.2.sl.TZ1.10c: Let g(x)=ln(f(x)) and f(2)=3. Find g′(2).
- 14N.2.sl.TZ0.1a: Find (f∘g)(x).
- 17M.2.sl.TZ2.6a: Show that (f∘g)(x)=x4−4x2+3.
- 18M.1.sl.TZ2.10a.i: Write down f′(2).
- 18M.1.sl.TZ2.10c: Let L2 be the tangent to the graph of g at P. L1 intersects L2 at the point Q. Find the...
- 12M.1.sl.TZ2.2a: Find f−1(x) .
- 11M.1.sl.TZ1.1b: Write down g−1(x) .
- 11M.2.sl.TZ2.1b: Find h−1(x) .
- 09M.2.sl.TZ1.3a: Find an expression for h(x) .
- 15M.1.sl.TZ1.4b: Find (f∘f)(−1).
- 15N.1.sl.TZ0.5b: Let g be a function so that (f∘g)(x)=8x6. Find g(x).
- 16M.1.sl.TZ2.6a: Write h(x) in the form asin(bx), where a, b∈Z.
- 10M.1.sl.TZ1.7c: Let g(x)=log3x , for x>0 . Find the value of (f−1∘g)(2) ,...
- 10M.1.sl.TZ2.4b: Find (g∘f)(π2) .
- 13M.1.sl.TZ1.5b: Let g be a function such that g−1 exists for all real numbers. Given that...
- 11N.2.sl.TZ0.1b: Find (f∘g)(x) .
- 16M.1.sl.TZ2.6b: Hence find the range of h.
- 17M.1.sl.TZ1.2a: Find f−1(x).
- 10N.1.sl.TZ0.9a: Find (f∘g)(x) .
- 10M.1.sl.TZ1.7a: Show that f−1(x)=32x .
- 10M.1.sl.TZ2.4c: Given that (g∘f)(x) can be written as cos(kx) , find the value of k,...
- 11N.2.sl.TZ0.1c: Find (f∘g)(3.5) .
- 13N.1.sl.TZ0.8b: Show that (g∘f−1)(x)=5x+2.
- 16M.1.sl.TZ1.1a: Write down g(2).
- 16M.1.sl.TZ1.1c: Find f−1(x).
- 18M.1.sl.TZ2.10a.ii: Find f(2).
- 08M.1.sl.TZ1.7b: Let g(x)=ex . Find (g∘f)(x) , giving your answer in the form...
- 09M.1.sl.TZ2.1b: Find (f∘g)(4) .
- 11N.2.sl.TZ0.1a: Find f−1(x) .
- 16N.2.sl.TZ0.1b: Find (g∘f)(x).
- 16N.2.sl.TZ0.1c: Solve (g∘f)(x)=0.
- 17M.2.sl.TZ2.6b: On the following grid, sketch the graph of (f∘g)(x), for...