DP Mathematics SL Questionbank
Area of a triangle, \(\frac{1}{2}ab\sin C\) .
Path: |
Description
[N/A]Directly related questions
- 18M.2.sl.TZ2.8d: Hence or otherwise find the shortest distance from R to the line through P and Q.
- 18M.2.sl.TZ2.8c: Find the area of triangle PQR.
- 18M.2.sl.TZ2.8b: Find the angle between PQ and PR.
- 18M.2.sl.TZ2.8a.ii: Find \(\left| {\mathop {{\text{PQ}}}\limits^ \to } \right|\).
- 18M.2.sl.TZ2.8a.i: Find \(\mathop {{\text{PQ}}}\limits^ \to \).
- 18M.2.sl.TZ1.6: Triangle ABC has a = 8.1 cm, b = 12.3 cm and area 15 cm2. Find the largest possible perimeter of...
- 17M.2.sl.TZ1.5: The following diagram shows the chord [AB] in a circle of radius 8 cm, where...
- 16M.1.sl.TZ2.5b: Find the exact area of the sector BDC.
- 16M.1.sl.TZ2.5a: Find \({\rm{A\hat BC}}\).
- 16N.1.sl.TZ0.8c: Write down an expression in terms of \(\theta \) for (i) angle ADB; (ii) area of...
- 12N.2.sl.TZ0.8a: Find the length of the chord [AB].
- 12N.2.sl.TZ0.8b: Find the area of triangle AOB.
- 12N.2.sl.TZ0.8c: Angle BOC is 2.4 radians. Find the length of arc ADC.
- 12N.2.sl.TZ0.8d: Angle BOC is 2.4 radians. Find the area of the shaded region.
- 12N.2.sl.TZ0.8e: Angle BOC is 2.4 radians. The shaded region is to be painted red. Red paint is sold in cans...
- 12M.2.sl.TZ2.1c: Find the area of \(\Delta {\rm{PQR}}\) .
- 08N.2.sl.TZ0.8d: Hence, or otherwise, find the area of the parallelogram.
- 08M.2.sl.TZ1.2b: Find the area of triangle PQR.
- 08M.1.sl.TZ2.10a: Find the area of the triangle OPB, in terms of \(\theta \) .
- 08M.1.sl.TZ2.10b: Explain why the area of triangle OPA is the same as the area triangle OPB.
- 12M.2.sl.TZ1.9a(i) and (ii): (i) Show that \({p^2}(41 - 40\cos 0.7) = 36\) . (ii) Find p .
- 12M.2.sl.TZ1.9b: Write down the length of BD.
- 12M.2.sl.TZ1.9c: Find \({\rm{A}}\widehat {\rm{D}}{\rm{B}}\) .
- 12M.2.sl.TZ1.9d(i) and (ii): (i) Show that \({\rm{C}}\widehat {\rm{B}}{\rm{D}} = 1.29\) radians, correct to 2 decimal...
- 09N.2.sl.TZ0.8d: Find the area of region ABCD.
- 09M.1.sl.TZ1.9c: (i) Find \({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}}\) . (ii) Hence, find the area of triangle...
- 10N.2.sl.TZ0.6a: Find \({\rm{A}}\widehat {\rm{C}}{\rm{B}}\) .
- 10N.2.sl.TZ0.6b: Find AB.
- 10M.2.sl.TZ1.8a: Use the cosine rule to show that \({\rm{AC}} = \sqrt {41 - 40\cos x} \) .
- 10M.2.sl.TZ1.8c: (i) Hence, find x, giving your answer to two decimal places. (ii) Find AC .
- 10M.2.sl.TZ1.8d(i) and (ii): (i) Find y. (ii) Hence, or otherwise, find the area of triangle ACD.
- 10M.2.sl.TZ1.8b: Use the sine rule in triangle ABC to find another expression for AC.
- SPNone.2.sl.TZ0.7a: Find an expression for the area of the shaded region.
- 13M.2.sl.TZ2.3a: Find \(x\) .
- 14M.2.sl.TZ2.5a: Find the two possible values for \(\hat A\).
- 17N.2.sl.TZ0.1b: Find the area of triangle ABC.
- 17N.2.sl.TZ0.1a: Find BC.
- 13M.2.sl.TZ1.8c: Find the area of triangle ADC.
- 13M.2.sl.TZ1.8d: Hence or otherwise, find the total area of the shaded regions.
- 15M.2.sl.TZ2.1b: Find the area of triangle \(ABC\).
- 14N.1.sl.TZ0.7: The following diagram shows triangle \(ABC\). Let...
- 15N.2.sl.TZ0.8c: The area of triangle \(ACD\) is half the area of triangle \(ABC\). Find the possible values of...
- 15N.2.sl.TZ0.8b: Find the area of triangle \(ABC\).