Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2015 Marks available 3 Reference code 15N.2.sl.TZ0.8
Level SL only Paper 2 Time zone TZ0
Command term Find Question number 8 Adapted from N/A

Question

The following diagram shows the quadrilateral ABCD.

AD=6 cm, AB=15 cm,AˆBC=44,AˆCB=83andDˆAC=θ

Find AC.

[3]
a.

Find the area of triangle ABC.

[3]
b.

The area of triangle ACD is half the area of triangle ABC.

Find the possible values of θ.

[5]
c.

Given that θ is obtuse, find CD.

[3]
d.

Markscheme

evidence of choosing sine rule     (M1)

egACsinCˆBA=ABsinAˆCB

correct substitution     (A1)

egACsin44=15sin83

10.4981

AC=10.5  (cm)     A1     N2

[3 marks]

a.

finding CˆAB (seen anywhere)     (A1)

eg1804483,CˆAB=53

correct substitution for area of triangle ABC     A1

eg12×15×10.4981×sin53

62.8813

area=62.9  (cm2)     A1     N2

[3 marks]

b.

correct substitution for area of triangle DAC    (A1)

eg12×6×10.4981×sinθ

attempt to equate area of triangle ACD to half the area of triangle ABC     (M1)

egarea ACD=12× area ABC; 2ACD=ABC

correct equation     A1

eg12×6×10.4981×sinθ=12(62.9), 62.9887sinθ=62.8813, sinθ=0.998294

86.653193.3468

θ=86.7 , θ=93.3      A1A1     N2

[5 marks]

 

c.

Note:     Note: If candidates use an acute angle from part (c) in the cosine rule, award M1A0A0 in part (d).

 

evidence of choosing cosine rule     (M1)

egCD2=AD2+AC22×AD×AC×cosθ

correct substitution into rhs     (A1)

egCD2=62+10.49822(6)(10.498)cos93.336

12.3921

12.4  (cm)     A1     N2

[3 marks]

Total [14 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.6 » Area of a triangle, 12absinC .
Show 36 related questions

View options