Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.sl.TZ0.8
Level SL only Paper 1 Time zone TZ0
Command term Write down Question number 8 Adapted from N/A

Question

Let OA=(104) and OB=(413).

The point C is such that AC=(111).

The following diagram shows triangle ABC. Let D be a point on [BC], with acute angle ADC=θ.

N16/5/MATME/SP1/ENG/TZ0/08.c.d.e

(i)     Find AB.

(ii)     Find |AB|.

[4]
a.

Show that the coordinates of C are (2, 1, 3).

[1]
b.

Write down an expression in terms of θ for

(i)     angle ADB;

(ii)     area of triangle ABD.

[2]
c.

Given that area ΔABDarea ΔACD=3, show that BDBC=34.

[5]
d.

Hence or otherwise, find the coordinates of point D.

[4]
e.

Markscheme

(i)     valid approach to find AB

egOBOA, (4(1)1034)

AB=(511)    A1     N2

(ii)     valid approach to find |AB|     (M1)

eg(5)2+(1)2+(1)2

|AB|=27     A1     N2

[4 marks]

a.

correct approach     A1

egOC=(111)+(104)

C has coordinates (2, 1, 3)     AG     N0

[1 mark]

b.

(i)     AˆDB=πθ,ˆD=180θ     A1     N1

(ii)     any correct expression for the area involving θ     A1     N1

egarea=12×AD×BD×sin(180θ), 12absinθ, 12|DA||DB|sin(πθ)

[2 marks]

c.

METHOD 1 (using sine formula for area)

correct expression for the area of triangle ACD (seen anywhere)     (A1)

eg12AD×DC×sinθ

correct equation involving areas     A1

eg12AD×BD×sin(πθ)12AD×DC×sinθ=3

recognizing that sin(πθ)=sinθ (seen anywhere)     (A1)

BDDC=3 (seen anywhere)     (A1)

correct approach using ratio     A1

eg3DC+DC=BC, BC=4DC

correct ratio BDBC=34     AG     N0

METHOD 2 (Geometric approach)

recognising ΔABD and ΔACD have same height     (A1)

eguse of h for both triangles, 12BD×h12CD×h=3

correct approach     A2

egBD=3x and DC=x, BDDC=3

correct working     A2

egBC=4x, BD+DC=4DC, BDBC=3x4x, BDBC=3DC4DC

BDBC=34    AG     N0

[5 marks]

d.

correct working (seen anywhere)     (A1)

egBD=34BC, OD=OB+34(600), CD=14CB

valid approach (seen anywhere)     (M1)

egOD=OB+BD, BC=(600)

correct working to find x-coordinate     (A1)

eg(413)+34(600), x=4+34(6), 2+14(6)

D is (12, 1, 3)     A1     N3

[4 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.6 » Area of a triangle, 12absinC .
Show 36 related questions

View options