DP Mathematics HL Questionbank

2.1
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.2.hl.TZ2.10a.iv: Explain why f is not a function for...
- 18M.2.hl.TZ2.10a.iii: Explain why f has no inverse on the given domain.
- 18M.2.hl.TZ2.10a.ii: With reference to your graph, explain why f is a function on the given domain.
- 18M.2.hl.TZ2.10a.i: Sketch the graph of y=f(x)...
- 17N.1.hl.TZ0.11a: Determine whether fn is an odd or even function, justifying your answer.
- 17M.1.hl.TZ2.2c: Write down the domain and range of f−1.
- 17M.1.hl.TZ2.2b: Find an expression for f−1(x).
- 17M.1.hl.TZ2.2a: Write down the range of f.
- 17M.2.hl.TZ1.12e: Find the inverse function g−1 and state its domain.
- 17M.2.hl.TZ1.12d: Explain why the inverse function f−1 does not exist.
- 17M.2.hl.TZ1.12c: Explain why f is an even function.
- 17M.2.hl.TZ1.12a: Find the largest possible domain D for f to be a function.
- 16M.2.hl.TZ2.5: The function f is defined as...
- 16M.2.hl.TZ1.5b.ii: Write down the range of f.
- 16M.2.hl.TZ1.5b.i: Sketch the graph y=f(x).
- 16M.2.hl.TZ1.5a: Prove that f is an even function.
- 16M.2.hl.TZ1.2b: If f(x)=x+2 and (g∘f)(x)=x2+4x−2 write down g(x).
- 16M.2.hl.TZ1.2a: Express x2+4x−2 in the form (x+a)2+b where a, b∈Z.
- 16M.2.hl.TZ1.11d.ii: Solve (f−1∘g)(x)<1.
- 16M.2.hl.TZ1.11d.i: Find an expression for g−1(x), stating the domain.
- 16M.2.hl.TZ1.11c.iii: Solve f−1(x)=1.
- 16M.2.hl.TZ1.11c.ii: For this value of a sketch the graphs of y=f(x) and y=f−1(x) on the same set...
- 16M.2.hl.TZ1.11c.i: Write down the largest value of a for which f has an inverse. Give your answer correct to...
- 16N.2.hl.TZ0.10e: Find an expression for f−1(x).
- 16N.2.hl.TZ0.10d: Use your answers from parts (b) and (c) to justify that f has an inverse and state its domain.
- 16N.2.hl.TZ0.2: Find the acute angle between the planes with equations x+y+z=3 and 2x−z=2.
- 15N.2.hl.TZ0.12c: Consider the function defined by h(x)=2x−5x+d, x≠−d and...
- 15N.2.hl.TZ0.12b: (i) Explain why f does not have an inverse. (ii) The domain of f is restricted...
- 15N.2.hl.TZ0.12a: The functions u and v are defined as u(x)=x−3, v(x)=2x where...
- 15N.1.hl.TZ0.12d: Find the range of f.
- 15N.1.hl.TZ0.12a: Show that f is an odd function.
- 09M.1.hl.TZ2.11: A function is defined as f(x)=k√x, with k>0 and x⩾0 . (a) ...
- 12M.1.hl.TZ2.11b: Find an expression for the composite function f∘g(x) in the form...
- 12N.1.hl.TZ0.12d: (i) State Fn(0) and Fn(1) . (ii) Show that Fn(x)<x ,...
- 12N.1.hl.TZ0.12a: Find an expression for (f∘f)(x) .
- 12N.1.hl.TZ0.12c: Show that F−n(x) is an expression for the inverse of Fn .
- 08M.1.hl.TZ1.8: The functions f and g are defined as: \[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant...
- 08M.1.hl.TZ2.4: Let f(x)=4x+2, x≠−2 and g(x)=x−1. If...
- 11M.1.hl.TZ2.8: A function is defined by...
- 09N.1.hl.TZ0.4: Consider the function f , where f(x)=arcsin(lnx). (a) Find the domain of f . (b)...
- SPNone.1.hl.TZ0.13c: Obtain expressions for the inverse function f−1 and state their domains.
- SPNone.1.hl.TZ0.5a: Determine whether f is even, odd or neither even nor odd.
- 13M.1.hl.TZ1.12d: Find the range of f.
- 13M.2.hl.TZ1.13d: (i) With f and g as defined in parts (a) and (b), solve g∘f(x)=2. (ii) Let...
- 10M.1.hl.TZ1.2: Shown below are the graphs of y=f(x) and y=g(x). If (f∘g)(x)=3,...
- 10M.1.hl.TZ2.10: A function f is defined by f(x)=2x−3x−1, x≠1. (a) Find...
- 10N.1.hl.TZ0.9: Consider the function f:x→√π4−arccosx. (a) Find the largest...
- 13M.1.hl.TZ2.12d: (i) Find an expression for f−1(x). (ii) Sketch the graph of y=f(x),...
- 11N.1.hl.TZ0.9b: Hence determine the range of the function f:x→x+1x2+x+1.
- 11N.1.hl.TZ0.9c: Explain why f has no inverse.
- 11N.2.hl.TZ0.8a: find f−1(x), stating its domain;
- 12M.1.hl.TZ2.11c: (i) Find an expression for the inverse function f−1(x) . (ii) State the...
- 11M.1.hl.TZ1.10a: Find the largest possible domain of the function g .
- 09N.2.hl.TZ0.9: (a) Given that the domain of g is x⩾a , find the least value of a such...
- 11M.1.hl.TZ1.8b: Find the coordinates of the point where the graph of y=f(x) and the graph of...
- 11M.1.hl.TZ1.8a: (i) Find (g∘f)(x) and write down the domain of the...
- 14M.2.hl.TZ1.12: Let f(x)=|x|−1. (a) The graph of y=g(x) is drawn below. ...
- 14M.1.hl.TZ2.14b: Find an expression for the composite function h∘g(x) and state its domain.
- 14M.1.hl.TZ2.14d: Nigel states that f is an odd function and Tom argues that f is an even function. (i) ...
- 14M.2.hl.TZ2.7b: Find the inverse function f−1, stating its domain.
- 15M.1.hl.TZ1.5b: Given that g is an odd function, find the value of r.
- 15M.1.hl.TZ1.9b: Find the range of g∘f.
- 15M.1.hl.TZ1.5a: Given that f is an even function, show that b=0.
- 15M.1.hl.TZ1.5c: The function h is both odd and even, with domain R. Find h(x).
- 15M.1.hl.TZ1.6a: Find an expression for f−1(x).
- 15M.1.hl.TZ1.6b: Given that f(x) can be written in the form f(x)=A+B2x−1, find the values...
- 15M.1.hl.TZ1.9a: Show that g∘f(x)=3sin(2x+π5)+4.
- 15M.1.hl.TZ1.9c: Given that g∘f(3π20)=7, find the next value of x,...
- 15M.1.hl.TZ2.10c: Find all values of x for which f(x)=f−1(x).
- 15M.1.hl.TZ2.11b: Hence show that g∘f(x)=sinx+cosxsinx−cosx.
- 15M.1.hl.TZ2.13b: Hence show that √2−1<1√2.
- 15M.1.hl.TZ2.10b: Find an expression for f−1(x).
- 15M.1.hl.TZ2.11a: Find an expression for g∘f(x), stating its domain.
- 15M.1.hl.TZ2.13a: Show that 1√n+√n+1=√n+1−√n where...
- 15M.2.hl.TZ1.6: A function f is defined by f(x)=x3+ex+1, x∈R....
- 14N.1.hl.TZ0.11a: (i) Find f−1(x). (ii) State the domain of f−1.
Sub sections and their related questions
Concept of function f:x↦f(x) : domain, range; image (value)
- 12N.1.hl.TZ0.12d: (i) State Fn(0) and Fn(1) . (ii) Show that Fn(x)<x ,...
- 09N.1.hl.TZ0.4: Consider the function f , where f(x)=arcsin(lnx). (a) Find the domain of f . (b)...
- 13M.1.hl.TZ1.12d: Find the range of f.
- 11N.1.hl.TZ0.9b: Hence determine the range of the function f:x→x+1x2+x+1.
- 11M.1.hl.TZ1.8b: Find the coordinates of the point where the graph of y=f(x) and the graph of...
- 11M.1.hl.TZ1.8a: (i) Find (g∘f)(x) and write down the domain of the...
- 11M.1.hl.TZ1.10a: Find the largest possible domain of the function g .
- 09N.2.hl.TZ0.9: (a) Given that the domain of g is x⩾a , find the least value of a such...
- 15M.1.hl.TZ1.6b: Given that f(x) can be written in the form f(x)=A+B2x−1, find the values...
- 15M.1.hl.TZ1.9b: Find the range of g∘f.
- 15M.1.hl.TZ2.13a: Show that 1√n+√n+1=√n+1−√n where...
- 15M.1.hl.TZ2.13b: Hence show that √2−1<1√2.
- 15N.1.hl.TZ0.12d: Find the range of f.
- 15N.2.hl.TZ0.12a: The functions u and v are defined as u(x)=x−3, v(x)=2x where...
- 16M.2.hl.TZ1.2a: Express x2+4x−2 in the form (x+a)2+b where a, b∈Z.
- 16M.2.hl.TZ1.2b: If f(x)=x+2 and (g∘f)(x)=x2+4x−2 write down g(x).
- 16M.2.hl.TZ1.5a: Prove that f is an even function.
- 16M.2.hl.TZ1.5b.i: Sketch the graph y=f(x).
- 16M.2.hl.TZ1.5b.ii: Write down the range of f.
- 16N.2.hl.TZ0.2: Find the acute angle between the planes with equations x+y+z=3 and 2x−z=2.
- 17N.1.hl.TZ0.11a: Determine whether fn is an odd or even function, justifying your answer.
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
- 18M.2.hl.TZ2.10a.i: Sketch the graph of y=f(x)...
- 18M.2.hl.TZ2.10a.ii: With reference to your graph, explain why f is a function on the given domain.
- 18M.2.hl.TZ2.10a.iii: Explain why f has no inverse on the given domain.
- 18M.2.hl.TZ2.10a.iv: Explain why f is not a function for...
Odd and even functions.
- SPNone.1.hl.TZ0.5a: Determine whether f is even, odd or neither even nor odd.
- 14M.1.hl.TZ2.14d: Nigel states that f is an odd function and Tom argues that f is an even function. (i) ...
- 15M.1.hl.TZ1.5a: Given that f is an even function, show that b=0.
- 15M.1.hl.TZ1.5b: Given that g is an odd function, find the value of r.
- 15M.1.hl.TZ1.5c: The function h is both odd and even, with domain R. Find h(x).
- 15N.1.hl.TZ0.12a: Show that f is an odd function.
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
Composite functions f∘g .
- 12M.1.hl.TZ2.11b: Find an expression for the composite function f∘g(x) in the form...
- 12N.1.hl.TZ0.12a: Find an expression for (f∘f)(x) .
- 08M.1.hl.TZ1.8: The functions f and g are defined as: \[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant...
- 08M.1.hl.TZ2.4: Let f(x)=4x+2, x≠−2 and g(x)=x−1. If...
- 13M.2.hl.TZ1.13d: (i) With f and g as defined in parts (a) and (b), solve g∘f(x)=2. (ii) Let...
- 10M.1.hl.TZ1.2: Shown below are the graphs of y=f(x) and y=g(x). If (f∘g)(x)=3,...
- 14M.2.hl.TZ1.12: Let f(x)=|x|−1. (a) The graph of y=g(x) is drawn below. ...
- 14M.1.hl.TZ2.14b: Find an expression for the composite function h∘g(x) and state its domain.
- 15M.1.hl.TZ1.9a: Show that g∘f(x)=3sin(2x+π5)+4.
- 15M.1.hl.TZ1.9b: Find the range of g∘f.
- 15M.1.hl.TZ1.9c: Given that g∘f(3π20)=7, find the next value of x,...
- 15M.1.hl.TZ2.11a: Find an expression for g∘f(x), stating its domain.
- 15M.1.hl.TZ2.11b: Hence show that g∘f(x)=sinx+cosxsinx−cosx.
- 15N.2.hl.TZ0.12a: The functions u and v are defined as u(x)=x−3, v(x)=2x where...
- 16N.2.hl.TZ0.2: Find the acute angle between the planes with equations x+y+z=3 and 2x−z=2.
- 17N.1.hl.TZ0.11a: Determine whether fn is an odd or even function, justifying your answer.
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
- 18M.2.hl.TZ2.10a.i: Sketch the graph of y=f(x)...
- 18M.2.hl.TZ2.10a.ii: With reference to your graph, explain why f is a function on the given domain.
- 18M.2.hl.TZ2.10a.iii: Explain why f has no inverse on the given domain.
- 18M.2.hl.TZ2.10a.iv: Explain why f is not a function for...
Identity function.
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
One-to-one and many-to-one functions.
- 09M.1.hl.TZ2.11: A function is defined as f(x)=k√x, with k>0 and x⩾0 . (a) ...
- 15M.2.hl.TZ1.6: A function f is defined by f(x)=x3+ex+1, x∈R....
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
Inverse function f−1, including domain restriction. Self-inverse functions.
- 12M.1.hl.TZ2.11c: (i) Find an expression for the inverse function f−1(x) . (ii) State the...
- 12N.1.hl.TZ0.12c: Show that F−n(x) is an expression for the inverse of Fn .
- 08M.1.hl.TZ1.8: The functions f and g are defined as: \[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant...
- 08M.1.hl.TZ2.4: Let f(x)=4x+2, x≠−2 and g(x)=x−1. If...
- 11M.1.hl.TZ2.8: A function is defined by...
- 09N.1.hl.TZ0.4: Consider the function f , where f(x)=arcsin(lnx). (a) Find the domain of f . (b)...
- SPNone.1.hl.TZ0.13c: Obtain expressions for the inverse function f−1 and state their domains.
- 10M.1.hl.TZ2.10: A function f is defined by f(x)=2x−3x−1, x≠1. (a) Find...
- 10N.1.hl.TZ0.9: Consider the function f:x→√π4−arccosx. (a) Find the largest...
- 13M.1.hl.TZ2.12d: (i) Find an expression for f−1(x). (ii) Sketch the graph of y=f(x),...
- 11N.1.hl.TZ0.9c: Explain why f has no inverse.
- 11N.2.hl.TZ0.8a: find f−1(x), stating its domain;
- 09N.2.hl.TZ0.9: (a) Given that the domain of g is x⩾a , find the least value of a such...
- 14M.2.hl.TZ2.7b: Find the inverse function f−1, stating its domain.
- 14N.1.hl.TZ0.11a: (i) Find f−1(x). (ii) State the domain of f−1.
- 15M.1.hl.TZ1.6a: Find an expression for f−1(x).
- 15M.1.hl.TZ2.10b: Find an expression for f−1(x).
- 15M.1.hl.TZ2.10c: Find all values of x for which f(x)=f−1(x).
- 15N.2.hl.TZ0.12b: (i) Explain why f does not have an inverse. (ii) The domain of f is restricted...
- 15N.2.hl.TZ0.12c: Consider the function defined by h(x)=2x−5x+d, x≠−d and...
- 16M.2.hl.TZ1.11c.i: Write down the largest value of a for which f has an inverse. Give your answer correct to...
- 16M.2.hl.TZ1.11c.ii: For this value of a sketch the graphs of y=f(x) and y=f−1(x) on the same set...
- 16M.2.hl.TZ1.11c.iii: Solve f−1(x)=1.
- 16M.2.hl.TZ1.11d.i: Find an expression for g−1(x), stating the domain.
- 16M.2.hl.TZ1.11d.ii: Solve (f−1∘g)(x)<1.
- 16M.2.hl.TZ2.5: The function f is defined as...
- 16N.2.hl.TZ0.10d: Use your answers from parts (b) and (c) to justify that f has an inverse and state its domain.
- 16N.2.hl.TZ0.10e: Find an expression for f−1(x).
- 17N.1.hl.TZ0.11a: Determine whether fn is an odd or even function, justifying your answer.
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
- 18M.2.hl.TZ2.10a.i: Sketch the graph of y=f(x)...
- 18M.2.hl.TZ2.10a.ii: With reference to your graph, explain why f is a function on the given domain.
- 18M.2.hl.TZ2.10a.iii: Explain why f has no inverse on the given domain.
- 18M.2.hl.TZ2.10a.iv: Explain why f is not a function for...