DP Mathematics HL Questionbank

Inverse function f−1, including domain restriction. Self-inverse functions.
Path: |
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.10c: The function h is defined by h(x)=√x, for x ≥ 0. State the...
- 18M.1.hl.TZ2.10a: Find the inverse function f−1, stating its domain.
- 18M.2.hl.TZ2.10a.iv: Explain why f is not a function for...
- 18M.2.hl.TZ2.10a.iii: Explain why f has no inverse on the given domain.
- 18M.2.hl.TZ2.10a.ii: With reference to your graph, explain why f is a function on the given domain.
- 18M.2.hl.TZ2.10a.i: Sketch the graph of y=f(x)...
- 16M.2.hl.TZ2.5: The function f is defined as...
- 16M.2.hl.TZ1.11d.ii: Solve (f−1∘g)(x)<1.
- 16M.2.hl.TZ1.11d.i: Find an expression for g−1(x), stating the domain.
- 16M.2.hl.TZ1.11c.iii: Solve f−1(x)=1.
- 16M.2.hl.TZ1.11c.ii: For this value of a sketch the graphs of y=f(x) and y=f−1(x) on the same set...
- 16M.2.hl.TZ1.11c.i: Write down the largest value of a for which f has an inverse. Give your answer correct to...
- 16N.2.hl.TZ0.10e: Find an expression for f−1(x).
- 16N.2.hl.TZ0.10d: Use your answers from parts (b) and (c) to justify that f has an inverse and state its domain.
- 17N.1.hl.TZ0.11a: Determine whether fn is an odd or even function, justifying your answer.
- 12M.1.hl.TZ2.11c: (i) Find an expression for the inverse function f−1(x) . (ii) State the...
- 12N.1.hl.TZ0.12c: Show that F−n(x) is an expression for the inverse of Fn .
- 08M.1.hl.TZ1.8: The functions f and g are defined as: \[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant...
- 08M.1.hl.TZ2.4: Let f(x)=4x+2, x≠−2 and g(x)=x−1. If...
- 11M.1.hl.TZ2.8: A function is defined by...
- 09N.1.hl.TZ0.4: Consider the function f , where f(x)=arcsin(lnx). (a) Find the domain of f . (b)...
- SPNone.1.hl.TZ0.13c: Obtain expressions for the inverse function f−1 and state their domains.
- 10M.1.hl.TZ2.10: A function f is defined by f(x)=2x−3x−1, x≠1. (a) Find...
- 10N.1.hl.TZ0.9: Consider the function f:x→√π4−arccosx. (a) Find the largest...
- 13M.1.hl.TZ2.12d: (i) Find an expression for f−1(x). (ii) Sketch the graph of y=f(x),...
- 11N.1.hl.TZ0.9c: Explain why f has no inverse.
- 11N.2.hl.TZ0.8a: find f−1(x), stating its domain;
- 09N.2.hl.TZ0.9: (a) Given that the domain of g is x⩾a , find the least value of a such...
- 14M.2.hl.TZ2.7b: Find the inverse function f−1, stating its domain.
- 15M.1.hl.TZ1.6a: Find an expression for f−1(x).
- 15M.1.hl.TZ2.10c: Find all values of x for which f(x)=f−1(x).
- 15M.1.hl.TZ2.10b: Find an expression for f−1(x).
- 15N.2.hl.TZ0.12b: (i) Explain why f does not have an inverse. (ii) The domain of f is restricted...
- 15N.2.hl.TZ0.12c: Consider the function defined by h(x)=2x−5x+d, x≠−d and...
- 14N.1.hl.TZ0.11a: (i) Find f−1(x). (ii) State the domain of f−1.