DP Mathematics HL Questionbank
Composite functions \(f \circ g\) .
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.10c: The function \(h\) is defined by \(h\left( x \right) = \sqrt x \), for \(x\) ≥ 0. State the...
- 18M.1.hl.TZ2.10a: Find the inverse function \({f^{ - 1}}\), stating its domain.
- 18M.2.hl.TZ2.10a.iv: Explain why \(f\) is not a function for...
- 18M.2.hl.TZ2.10a.iii: Explain why \(f\) has no inverse on the given domain.
- 18M.2.hl.TZ2.10a.ii: With reference to your graph, explain why \(f\) is a function on the given domain.
- 18M.2.hl.TZ2.10a.i: Sketch the graph of \(y = f\left( x \right)\)...
- 16N.2.hl.TZ0.2: Find the acute angle between the planes with equations \(x + y + z = 3\) and \(2x - z = 2\).
- 17N.1.hl.TZ0.11a: Determine whether \({f_n}\) is an odd or even function, justifying your answer.
- 12M.1.hl.TZ2.11b: Find an expression for the composite function \(f \circ g(x)\) in the form...
- 12N.1.hl.TZ0.12a: Find an expression for \((f \circ f)(x)\) .
- 08M.1.hl.TZ1.8: The functions f and g are defined as: \[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant...
- 08M.1.hl.TZ2.4: Let \(f(x) = \frac{4}{{x + 2}},{\text{ }}x \ne - 2{\text{ and }}g(x) = x - 1\). If...
- 13M.2.hl.TZ1.13d: (i) With f and g as defined in parts (a) and (b), solve \(g \circ f(x) = 2\). (ii) Let...
- 10M.1.hl.TZ1.2: Shown below are the graphs of \(y = f(x)\) and \(y = g(x)\). If \((f \circ g)(x) = 3\),...
- 14M.2.hl.TZ1.12: Let \(f(x) = \left| x \right| - 1\). (a) The graph of \(y = g(x)\) is drawn below. ...
- 14M.1.hl.TZ2.14b: Find an expression for the composite function \(h \circ g(x)\) and state its domain.
- 15M.1.hl.TZ1.9a: Show that \(g \circ f(x) = 3\sin \left( {2x + \frac{\pi }{5}} \right) + 4\).
- 15M.1.hl.TZ1.9c: Given that \(g \circ f\left( {\frac{{3\pi }}{{20}}} \right) = 7\), find the next value of \(x\),...
- 15M.1.hl.TZ1.9b: Find the range of \(g \circ f\).
- 15M.1.hl.TZ2.11b: Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\).
- 15M.1.hl.TZ2.11a: Find an expression for \(g \circ f(x)\), stating its domain.
- 15N.2.hl.TZ0.12a: The functions \(u\) and \(v\) are defined as \(u(x) = x - 3,{\text{ }}v(x) = 2x\) where...