Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 18 Reference code 14M.2.hl.TZ1.12
Level HL only Paper 2 Time zone TZ1
Command term Deduce, Find, Simplify, Sketch, and State Question number 12 Adapted from N/A

Question

Let f(x)=|x|1.

(a)     The graph of y=g(x) is drawn below.


 

          (i)     Find the value of (fg)(1).

          (ii)     Find the value of (fgg)(1).

          (iii)     Sketch the graph of y=(fg)(x).

(b)     (i)     Sketch the graph of y=f(x).

          (ii)     State the zeros of f.

(c)     (i)     Sketch the graph of y=(ff)(x).

          (ii)     State the zeros of ff.

(d)     Given that we can denote ffffn times as fn,

          (i)     find the zeros of f3;

          (ii)     find the zeros of f4;

          (iii)     deduce the zeros of f8.

(e)     The zeros of f2n are a1, a2, a3, aN.

          (i)     State the relation between n and N;

          (ii)     Find, and simplify, an expression for Nr=1|ar| in terms of n.

Markscheme

(a)     (i)     f(0)=1     (M1)A1

          (ii)     (fg)(0)=f(4)=3     A1

          (iii)
               (M1)A1

 

Note:     Award M1 for evidence that the lower part of the graph has been reflected and A1 correct shape with y-intercept below 4.

 

[5 marks]

 

(b)     (i)
               (M1)A1

 

Note:     Award M1 for any translation of y=|x|.

 

          (ii)     ±1     A1

 

Note:     Do not award the A1 if coordinates given, but do not penalise in the rest of the question

 

[3 marks]

 

(c)     (i)
               (M1)A1

 

Note:     Award M1 for evidence that lower part of (b) has been reflected in the x-axis and translated.

 

          (ii)     0, ±2     A1

[3 marks]

 

(d)     (i)     ±1, ±3     A1

          (ii)     0, ±2, ±4     A1

          (iii)     0, ±2, ±4, ±6, ±8     A1

[3 marks]

 

(e)     (i)     (1, 3), (2, 5),      (M1)

          N=2n+1     A1

          (ii)     Using the formula of the sum of an arithmetic series     (M1)

          EITHER

          4(1+2+3++n)=42n(n+1)

          =2n(n+1)     A1

          OR

          2(2+4+6++2n)=22n(2n+2)

          =2n(n+1)     A1

[4 marks]

 

Total [18 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2 - Core: Functions and equations » 2.2 » The graph of a function; its equation y=f(x) .
Show 43 related questions

View options