DP Mathematics HL Questionbank
Concept of function \(f:x \mapsto f\left( x \right)\) : domain, range; image (value)
Path: |
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.10c: The function \(h\) is defined by \(h\left( x \right) = \sqrt x \), for \(x\) ≥ 0. State the...
- 18M.1.hl.TZ2.10a: Find the inverse function \({f^{ - 1}}\), stating its domain.
- 18M.2.hl.TZ2.10a.iv: Explain why \(f\) is not a function for...
- 18M.2.hl.TZ2.10a.iii: Explain why \(f\) has no inverse on the given domain.
- 18M.2.hl.TZ2.10a.ii: With reference to your graph, explain why \(f\) is a function on the given domain.
- 18M.2.hl.TZ2.10a.i: Sketch the graph of \(y = f\left( x \right)\)...
- 16M.2.hl.TZ1.5b.ii: Write down the range of \(f\).
- 16M.2.hl.TZ1.5b.i: Sketch the graph \(y = f(x)\).
- 16M.2.hl.TZ1.5a: Prove that \(f\) is an even function.
- 16M.2.hl.TZ1.2b: If \(f(x) = x + 2\) and \((g \circ f)(x) = {x^2} + 4x - 2\) write down \(g(x)\).
- 16M.2.hl.TZ1.2a: Express \({x^2} + 4x - 2\) in the form \({(x + a)^2} + b\) where \(a,{\text{ }}b \in \mathbb{Z}\).
- 16N.2.hl.TZ0.2: Find the acute angle between the planes with equations \(x + y + z = 3\) and \(2x - z = 2\).
- 17N.1.hl.TZ0.11a: Determine whether \({f_n}\) is an odd or even function, justifying your answer.
- 12N.1.hl.TZ0.12d: (i) State \({F_n}(0){\text{ and }}{F_n}(1)\) . (ii) Show that \({F_n}(x) < x\) ,...
- 09N.1.hl.TZ0.4: Consider the function f , where \(f(x) = \arcsin (\ln x)\). (a) Find the domain of f . (b)...
- 13M.1.hl.TZ1.12d: Find the range of f.
- 11N.1.hl.TZ0.9b: Hence determine the range of the function \(f:x \to \frac{{x + 1}}{{{x^2} + x + 1}}\).
- 11M.1.hl.TZ1.10a: Find the largest possible domain of the function \(g\) .
- 09N.2.hl.TZ0.9: (a) Given that the domain of \(g\) is \(x \geqslant a\) , find the least value of \(a\) such...
- 11M.1.hl.TZ1.8b: Find the coordinates of the point where the graph of \(y = f(x)\) and the graph of...
- 11M.1.hl.TZ1.8a: (i) Find \(\left( {g \circ f} \right)\left( x \right)\) and write down the domain of the...
- 15M.1.hl.TZ1.9b: Find the range of \(g \circ f\).
- 15M.1.hl.TZ1.6b: Given that \(f(x)\) can be written in the form \(f(x) = A + \frac{B}{{2x - 1}}\), find the values...
- 15M.1.hl.TZ2.13b: Hence show that \(\sqrt 2 - 1 < \frac{1}{{\sqrt 2 }}\).
- 15M.1.hl.TZ2.13a: Show that \(\frac{1}{{\sqrt n + \sqrt {n + 1} }} = \sqrt {n + 1} - \sqrt n \) where...
- 15N.1.hl.TZ0.12d: Find the range of \(f\).
- 15N.2.hl.TZ0.12a: The functions \(u\) and \(v\) are defined as \(u(x) = x - 3,{\text{ }}v(x) = 2x\) where...