Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ2.10
Level HL only Paper 2 Time zone TZ2
Command term Sketch Question number 10 Adapted from N/A

Question

Consider the expression f(x)=tan(x+π4)cot(π4x).

The expression f(x) can be written as g(t) where t=tanx.

Let αβ be the roots of g(t)=k, where 0 < k < 1.

Sketch the graph of y=f(x) for 5π8.

[2]
a.i.

With reference to your graph, explain why f is a function on the given domain.

[1]
a.ii.

Explain why f has no inverse on the given domain.

[1]
a.iii.

Explain why f is not a function for - \frac{{3\pi }}{4} \leqslant x \leqslant \frac{\pi }{4}.

[1]
a.iv.

Show that g\left( t \right) = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}.

[3]
b.

Sketch the graph of y = g\left( t \right) for t ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.

[3]
c.

Find \alpha and β in terms of k.

[5]
d.i.

Show that \alpha  + β < −2.

[2]
d.ii.

Markscheme

     A1A1

A1 for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.

Note: Axes intercepts and scales not required.

A1 for correct domain

[2 marks]

a.i.

for each value of x there is a unique value of f\left( x \right)      A1

Note: Accept “passes the vertical line test” or equivalent.

[1 mark]

a.ii.

no inverse because the function fails the horizontal line test or equivalent      R1

Note: No FT if the graph is in degrees (one-to-one).

[1 mark]

a.iii.

the expression is not valid at either of x = \frac{\pi }{4}\,\,\left( {{\text{or}} - \frac{{3\pi }}{4}} \right)       R1

[1 mark]

a.iv.

METHOD 1

f\left( x \right) = \frac{{{\text{tan}}\left( {x + \frac{\pi }{4}} \right)}}{{{\text{tan}}\left( {\frac{\pi }{4} - x} \right)}}     M1

= \frac{{\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}}}{{\frac{{{\text{tan}}\,\frac{\pi }{4} - {\text{tan}}\,x}}{{1 + {\text{tan}}\,\frac{\pi }{4}{\text{tan}}\,x}}}}      M1A1

= {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}      AG

 

METHOD 2

f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{tan}}\left( {\frac{\pi }{2} - \frac{\pi }{4} + x} \right)      (M1)

= {\text{ta}}{{\text{n}}^2}\left( {x + \frac{\pi }{4}} \right)     A1

g\left( t \right) = {\left( {\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}} \right)^2}     A1

= {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}      AG

[3 marks]

b.

 

for t ≤ 0, correct concavity with two axes intercepts and with asymptote y = 1      A1

t intercept at (−1, 0)      A1

y intercept at (0, 1)       A1

[3 marks]

c.

METHOD 1

\alpha β satisfy \frac{{{{\left( {1 + t} \right)}^2}}}{{{{\left( {1 - t} \right)}^2}}} = k     M1

1 + {t^2} + 2t = k\left( {1 + {t^2} - 2t} \right)     A1

\left( {k - 1} \right){t^2} - 2\left( {k + 1} \right)t + \left( {k - 1} \right) = 0     A1

attempt at using quadratic formula      M1

\alpha β  = \frac{{k + 1 \pm 2\sqrt k }}{{k - 1}} or equivalent     A1

 

METHOD 2

\alpha β satisfy \frac{{1 + t}}{{1 - t}} = \left(  \pm  \right)\sqrt k       M1

t + \sqrt k t = \sqrt k  - 1      M1

t = \frac{{\sqrt k  - 1}}{{\sqrt k  + 1}} (or equivalent)      A1

t - \sqrt k t =  - \left( {\sqrt k  + 1} \right)     M1

t = \frac{{\sqrt k  + 1}}{{\sqrt k  - 1}} (or equivalent)       A1

so for eg\alpha  = \frac{{\sqrt k  - 1}}{{\sqrt k  + 1}}β = \frac{{\sqrt k  + 1}}{{\sqrt k  - 1}}

[5 marks]

d.i.

\alpha  + β  = 2\frac{{\left( {k + 1} \right)}}{{\left( {k - 1} \right)}}\,\left( { =  - 2\frac{{\left( {1 + k} \right)}}{{\left( {1 - k} \right)}}} \right)     A1

since 1 + k > 1 - k     R1

\alpha  + β < −2     AG

Note: Accept a valid graphical reasoning.

[2 marks]

d.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
a.iv.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.1 » Concept of function f:x \mapsto f\left( x \right) : domain, range; image (value)
Show 26 related questions

View options