Date | November 2010 | Marks available | 8 | Reference code | 10N.1.hl.TZ0.9 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine, Find, and Write down | Question number | 9 | Adapted from | N/A |
Question
Consider the function f:x→√π4−arccosx.
(a) Find the largest possible domain of f.
(b) Determine an expression for the inverse function, f−1, and write down its domain.
Markscheme
(a) π4−arccosx⩾
\arccos x \leqslant \frac{\pi }{4} (M1)
x \geqslant \frac{{\sqrt 2 }}{2}\,\,\,\,\,\left( {{\text{accept }}x \geqslant \frac{1}{{\sqrt 2 }}} \right) (A1)
since - 1 \leqslant x \leqslant 1 (M1)
\Rightarrow \frac{{\sqrt 2 }}{2} \leqslant x \leqslant 1\,\,\,\,\,\left( {{\text{accept }}\frac{1}{{\sqrt 2 }} \leqslant x \leqslant 1} \right) A1
Note: Penalize the use of < instead of \leqslant only once.
(b) y = \sqrt {\frac{\pi }{4} - \arccos x} \Rightarrow x = \cos \left( {\frac{\pi }{4} - {y^2}} \right) M1A1
{f^{ - 1}}:x \to \cos \left( {\frac{\pi }{4} - {x^2}} \right) A1
0 \leqslant x \leqslant \sqrt {\frac{\pi }{4}} A1
[8 marks]
Examiners report
Very few correct solutions were seen to (a). Many candidates realised that \arccos x \leqslant \frac{\pi }{4} but then concluded incorrectly, not realising that cos is a decreasing function, that x \leqslant \cos \left( {\frac{\pi }{4}} \right). In (b) candidates often gave an incorrect domain.