Date | November 2010 | Marks available | 8 | Reference code | 10N.1.hl.TZ0.9 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine, Find, and Write down | Question number | 9 | Adapted from | N/A |
Question
Consider the function \(f:x \to \sqrt {\frac{\pi }{4} - \arccos x} \).
(a) Find the largest possible domain of f.
(b) Determine an expression for the inverse function, \({f^{ - 1}}\), and write down its domain.
Markscheme
(a) \(\frac{\pi }{4} - \arccos x \geqslant 0\)
\(\arccos x \leqslant \frac{\pi }{4}\) (M1)
\(x \geqslant \frac{{\sqrt 2 }}{2}\,\,\,\,\,\left( {{\text{accept }}x \geqslant \frac{1}{{\sqrt 2 }}} \right)\) (A1)
since \( - 1 \leqslant x \leqslant 1\) (M1)
\( \Rightarrow \frac{{\sqrt 2 }}{2} \leqslant x \leqslant 1\,\,\,\,\,\left( {{\text{accept }}\frac{1}{{\sqrt 2 }} \leqslant x \leqslant 1} \right)\) A1
Note: Penalize the use of \( < \) instead of \( \leqslant \) only once.
(b) \(y = \sqrt {\frac{\pi }{4} - \arccos x} \Rightarrow x = \cos \left( {\frac{\pi }{4} - {y^2}} \right)\) M1A1
\({f^{ - 1}}:x \to \cos \left( {\frac{\pi }{4} - {x^2}} \right)\) A1
\(0 \leqslant x \leqslant \sqrt {\frac{\pi }{4}} \) A1
[8 marks]
Examiners report
Very few correct solutions were seen to (a). Many candidates realised that \(\arccos x \leqslant \frac{\pi }{4}\) but then concluded incorrectly, not realising that cos is a decreasing function, that \(x \leqslant \cos \left( {\frac{\pi }{4}} \right)\). In (b) candidates often gave an incorrect domain.