Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2010 Marks available 8 Reference code 10N.1.hl.TZ0.9
Level HL only Paper 1 Time zone TZ0
Command term Determine, Find, and Write down Question number 9 Adapted from N/A

Question

Consider the function f:xπ4arccosx.

(a)     Find the largest possible domain of f.

(b)     Determine an expression for the inverse function, f1, and write down its domain.

Markscheme

(a)     π4arccosx

\arccos x \leqslant \frac{\pi }{4}     (M1)

x \geqslant \frac{{\sqrt 2 }}{2}\,\,\,\,\,\left( {{\text{accept }}x \geqslant \frac{1}{{\sqrt 2 }}} \right)     (A1)

since - 1 \leqslant x \leqslant 1     (M1)

\Rightarrow \frac{{\sqrt 2 }}{2} \leqslant x \leqslant 1\,\,\,\,\,\left( {{\text{accept }}\frac{1}{{\sqrt 2 }} \leqslant x \leqslant 1} \right)     A1

Note: Penalize the use of < instead of \leqslant only once.

 

(b)     y = \sqrt {\frac{\pi }{4} - \arccos x}  \Rightarrow x = \cos \left( {\frac{\pi }{4} - {y^2}} \right)     M1A1

{f^{ - 1}}:x \to \cos \left( {\frac{\pi }{4} - {x^2}} \right)     A1

0 \leqslant x \leqslant \sqrt {\frac{\pi }{4}}     A1

[8 marks]

Examiners report

Very few correct solutions were seen to (a). Many candidates realised that \arccos x \leqslant \frac{\pi }{4} but then concluded incorrectly, not realising that cos is a decreasing function, that x \leqslant \cos \left( {\frac{\pi }{4}} \right). In (b) candidates often gave an incorrect domain.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.1 » Inverse function {f^{ - 1}}, including domain restriction. Self-inverse functions.

View options