Date | May 2015 | Marks available | 2 | Reference code | 15M.1.hl.TZ2.11 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Hence and Show that | Question number | 11 | Adapted from | N/A |
Question
Consider the functions f(x)=tanx, 0≤ x<π2 and g(x)=x+1x−1, x∈R, x≠1.
Find an expression for g∘f(x), stating its domain.
Hence show that g∘f(x)=sinx+cosxsinx−cosx.
Let y=g∘f(x), find an exact value for dydx at the point on the graph of y=g∘f(x) where x=π6, expressing your answer in the form a+b√3, a, b∈Z.
Show that the area bounded by the graph of y=g∘f(x), the x-axis and the lines x=0 and x=π6 is ln(1+√3).
Markscheme
g∘f(x)=tanx+1tanx−1 A1
x≠π4, 0≤x<π2 A1
[2 marks]
tanx+1tanx−1=sinxcosx+1sinxcosx−1 M1A1
=sinx+cosxsinx−cosx AG
[2 marks]
METHOD 1
dydx=(sinx−cosx)(cosx−sinx)−(sinx+cosx)(cosx+sinx)(sinx−cosx)2 M1(A1)
dydx=(2sinxcosx−cos2x−sin2x)−(2sinxcosx+cos2x+sin2x)cos2x+sin2x−2sinxcosx
=−21−sin2x
Substitute π6 into any formula for dydx M1
−21−sinπ3
=−21−√32 A1
=−42−√3
=−42−√3(2+√32+√3) M1
=−8−4√31=−8−4√3 A1
METHOD 2
dydx=(tanx−1)sec2x−(tanx+1)sec2x(tanx−1)2 M1A1
=−2sec2x(tanx−1)2 A1
=−2sec2π6(tanπ6−1)2=−2(43)(1√3−1)2=−8(1−√3)2 M1
Note: Award M1 for substitution π6.
−8(1−√3)2=−8(4−2√3)(4+2√3)(4+2√3)=−8−4√3 M1A1
[6 marks]
Area |∫π60sinx+cosxsinx−cosxdx| M1
=|[ln|sinx−cosx|]π60| A1
Note: Condone absence of limits and absence of modulus signs at this stage.
=|ln|sinπ6−cosπ6|−ln|sin0−cos0|| M1
=|ln|12−√32|−0|
=|ln(√3−12)| A1
=−ln(√3−12)=ln(2√3−1) A1
=ln(2√3−1×√3+1√3+1) M1
=ln(√3+1) AG
[6 marks]
Total [16 marks]