Date | May 2015 | Marks available | 2 | Reference code | 15M.1.hl.TZ2.11 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Hence and Show that | Question number | 11 | Adapted from | N/A |
Question
Consider the functions \(f(x) = \tan x,{\text{ }}0 \le \ x < \frac{\pi }{2}\) and \(g(x) = \frac{{x + 1}}{{x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).
Find an expression for \(g \circ f(x)\), stating its domain.
Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\).
Let \(y = g \circ f(x)\), find an exact value for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) at the point on the graph of \(y = g \circ f(x)\) where \(x = \frac{\pi }{6}\), expressing your answer in the form \(a + b\sqrt 3 ,{\text{ }}a,{\text{ }}b \in \mathbb{Z}\).
Show that the area bounded by the graph of \(y = g \circ f(x)\), the \(x\)-axis and the lines \(x = 0\) and \(x = \frac{\pi }{6}\) is \(\ln \left( {1 + \sqrt 3 } \right)\).
Markscheme
\(g \circ f(x) = \frac{{\tan x + 1}}{{\tan x - 1}}\) A1
\(x \ne \frac{\pi }{4},{\text{ }}0 \le x < \frac{\pi }{2}\) A1
[2 marks]
\(\frac{{\tan x + 1}}{{\tan x - 1}} = \frac{{\frac{{\sin x}}{{\cos x}} + 1}}{{\frac{{\sin x}}{{\cos x}} - 1}}\) M1A1
\( = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\) AG
[2 marks]
METHOD 1
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}}{{{{(\sin x - \cos x)}^2}}}\) M1(A1)
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(2\sin x\cos x - {{\cos }^2}x - {{\sin }^2}x) - (2\sin x\cos x + {{\cos }^2}x + {{\sin }^2}x)}}{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}\)
\( = \frac{{ - 2}}{{1 - \sin 2x}}\)
Substitute \(\frac{\pi }{6}\) into any formula for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) M1
\(\frac{{ - 2}}{{1 - \sin \frac{\pi }{3}}}\)
\( = \frac{{ - 2}}{{1 - \frac{{\sqrt 3 }}{2}}}\) A1
\( = \frac{{ - 4}}{{2 - \sqrt 3 }}\)
\( = \frac{{ - 4}}{{2 - \sqrt 3 }}\left( {\frac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}} \right)\) M1
\( = \frac{{ - 8 - 4\sqrt 3 }}{1} = - 8 - 4\sqrt 3 \) A1
METHOD 2
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\tan x - 1){{\sec }^2}x - (\tan x + 1){{\sec }^2}x}}{{{{(\tan x - 1)}^2}}}\) M1A1
\( = \frac{{ - 2{{\sec }^2}x}}{{{{(\tan x - 1)}^2}}}\) A1
\( = \frac{{ - 2{{\sec }^2}\frac{\pi }{6}}}{{{{\left( {\tan \frac{\pi }{6} - 1} \right)}^2}}} = \frac{{ - 2\left( {\frac{4}{3}} \right)}}{{{{\left( {\frac{1}{{\sqrt 3 }} - 1} \right)}^2}}} = \frac{{ - 8}}{{{{\left( {1 - \sqrt 3 } \right)}^2}}}\) M1
Note: Award M1 for substitution \(\frac{\pi }{6}\).
\(\frac{{ - 8}}{{{{\left( {1 - \sqrt 3 } \right)}^2}}} = \frac{{ - 8}}{{\left( {4 - 2\sqrt 3 } \right)}}\frac{{\left( {4 + 2\sqrt 3 } \right)}}{{\left( {4 + 2\sqrt 3 } \right)}} = - 8 - 4\sqrt 3 \) M1A1
[6 marks]
Area \(\left| {\int_0^{\frac{\pi }{6}} {\frac{{\sin x + \cos x}}{{\sin x - \cos x}}{\text{d}}x} } \right|\) M1
\( = \left| {\left[ {\ln \left| {\sin x - \cos x} \right|} \right]_0^{\frac{\pi }{6}}} \right|\) A1
Note: Condone absence of limits and absence of modulus signs at this stage.
\( = \left| {\ln \left| {\sin \frac{\pi }{6} - \cos \frac{\pi }{6}} \right| - \ln \left| {\sin 0 - \cos 0} \right|} \right|\) M1
\( = \left| {\ln \left| {\frac{1}{2} - \frac{{\sqrt 3 }}{2}} \right| - 0} \right|\)
\( = \left| {\ln \left( {\frac{{\sqrt 3 - 1}}{2}} \right)} \right|\) A1
\( = - \ln \left( {\frac{{\sqrt 3 - 1}}{2}} \right) = \ln \left( {\frac{2}{{\sqrt 3 - 1}}} \right)\) A1
\( = \ln \left( {\frac{2}{{\sqrt 3 - 1}} \times \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}}} \right)\) M1
\( = \ln \left( {\sqrt 3 + 1} \right)\) AG
[6 marks]
Total [16 marks]