User interface language: English | Español

Date None Specimen Marks available 5 Reference code SPNone.1.hl.TZ0.13
Level HL only Paper 1 Time zone TZ0
Command term Obtain Question number 13 Adapted from N/A

Question

The function f is defined by

\[f(x) = \left\{ {\begin{array}{*{20}{c}}
  {2x - 1,}&{x \leqslant 2} \\
  {a{x^2} + bx - 5,}&{2 < x < 3}
\end{array}} \right.\]

where a , \(b \in \mathbb{R}\) .

Given that f and its derivative, \(f'\) , are continuous for all values in the domain of f , find the values of a and b .

[6]
a.

Show that f is a one-to-one function.

[3]
b.

Obtain expressions for the inverse function \({f^{ - 1}}\) and state their domains.

[5]
c.

Markscheme

f continuous \( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f(x)\)     M1

\(4a + 2b = 8\)     A1

\(f'(x) = \left\{ {\begin{array}{*{20}{c}}
  {2,}&{x < 2} \\
  {2ax + b,}&{2 < x < 3}
\end{array}} \right.\)     A1

\(f'{\text{ continuous}} \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f'(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f'(x)\)

\(4a + b = 2\)     A1

solve simultaneously     M1

to obtain a = –1 and b = 6     A1

[6 marks]

a.

for \(x \leqslant 2,{\text{ }}f'(x) = 2 > 0\)     A1

for \(2 < x < 3,{\text{ }}f'(x) = - 2x + 6 > 0\)     A1

since \(f'(x) > 0\) for all values in the domain of f , f is increasing     R1

therefore one-to-one     AG

[3 marks]

b.

\(x = 2y - 1 \Rightarrow y = \frac{{x + 1}}{2}\)     M1

\(x = - {y^2} + 6y - 5 \Rightarrow {y^2} - 6y + x + 5 = 0\)     M1

\(y = 3 \pm \sqrt {4 - x} \)

therefore

\({f^{ - 1}}(x) = \left\{ {\begin{array}{*{20}{c}}
  {\frac{{x + 1}}{2},}&{x \leqslant 3} \\
  {3 - \sqrt {4 - x} ,}&{3 < x < 4}
\end{array}} \right.\)     A1A1A1

Note: Award A1 for the first line and A1A1 for the second line.

 

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.1 » Inverse function \({f^{ - 1}}\), including domain restriction. Self-inverse functions.

View options