Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.1.SL.TZ0.S_9
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_9 Adapted from N/A

Question

The points A and B have position vectors (244) and (680) respectively.

Point C has position vector (1k0). Let O be the origin.

Find, in terms of k,

OAOC.

[2]
a.i.

OBOC.

[1]
a.ii.

Given that AˆOC=BˆOC, show that k=7.

[8]
b.

Calculate the area of triangle AOC.

[6]
c.

Markscheme

correct substitution into either OAOC or into OBOC (in (ii))          (A1)     

eg      2×(1)+4×k,  6×(1)+8×k

correct expression           A1   N1

eg      2+4k,  4k+2

[2 marks]

a.i.

correct expression           A1   N1

eg      8k6,  6+8k

[1 mark]

a.ii.

finding magnitudes (seen anywhere)           A1A1

eg      (2)2+(4)2+(4)2(=6),  (6)2+(8)2+02(=10)

correct substitution of their values into formula for angle AOC           (A1)

eg      cosθ=2+4k(2)2+(4)2+(4)2|OC|

correct substitution of their values into formula for angle BOC           (A1)

eg      cosθ=8k6(6)2+(8)2+02|OC|

recognizing that cosAˆOC=cosBˆOC  (seen anywhere)           (M1)

eg      2+4k|OC|(2)2+(4)2+(4)2=8k6|OC|62+(8)2+02,  2+4k61+k2=8k6101+k2

correct working (without radicals)           (A2)

eg      10(2+4k)=6(8k6),  11k279k+14=0

correct working clearly leading to the required answer           A1

eg      20+36=48k-40k,  56=8k,  k=7  and  k=211,  (k7)(11k2)=0

k=7           AG   N0

[8 marks]

b.

finding magnitude of OC (seen anywhere)           A1

eg      (1)2+72+02,  50

valid attempt to find cosθ           (M1)

eg      cosθ=2+286(1)2+72+02,  cosθ=56610(1)2+72+02,  (26)2=62+(50)22(6)50cosθ

finding cosθ           A1

eg      cosθ=550(=12)

valid approach to find sinθ (seen anywhere)           (M1)

eg      θ=π4,  sinθ=cosθ,  sinθ=12550,  sinθ=1cos2θ,  sinθ=22

correct substitution of their values into 12absinC           (A1)

eg      12×6×50×1-2550,  12×6×50×550

area is 15           A1   N3

[6 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.2—2d and 3d trig, sine rule, cosine rule, area
Show 133 related questions
Topic 2—Functions » SL 2.10—Solving equations graphically and analytically
Topic 3— Geometry and trigonometry » AHL 3.12—Vector definitions
Topic 3— Geometry and trigonometry » AHL 3.13—Scalar (dot) product
Topic 3— Geometry and trigonometry » AHL 3.16—Vector product
Topic 2—Functions
Topic 3— Geometry and trigonometry

View options