Date | November 2019 | Marks available | 2 | Reference code | 19N.1.SL.TZ0.S_9 |
Level | Standard Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 0 |
Command term | Find | Question number | S_9 | Adapted from | N/A |
Question
The points A and B have position vectors (−24−4) and (680) respectively.
Point C has position vector (−1k0). Let O be the origin.
Find, in terms of k,
→OA∙→OC.
→OB∙→OC.
Given that AˆOC=BˆOC, show that k=7.
Calculate the area of triangle AOC.
Markscheme
correct substitution into either →OA∙→OC or into →OB∙→OC (in (ii)) (A1)
eg −2×(−1)+4×k, 6×(−1)+8×k
correct expression A1 N1
eg 2+4k, 4k+2
[2 marks]
correct expression A1 N1
eg 8k−6, −6+8k
[1 mark]
finding magnitudes (seen anywhere) A1A1
eg √(−2)2+(4)2+(−4)2(=6), √(6)2+(8)2+02(=10)
correct substitution of their values into formula for angle AOC (A1)
eg cosθ=2+4k√(−2)2+(4)2+(−4)2|→OC|
correct substitution of their values into formula for angle BOC (A1)
eg cosθ=8k−6√(6)2+(8)2+02|→OC|
recognizing that cosAˆOC=cosBˆOC (seen anywhere) (M1)
eg 2+4k|→OC|√(−2)2+(4)2+(−4)2=8k−6|→OC|√62+(8)2+02, 2+4k6√1+k2=8k−610√1+k2
correct working (without radicals) (A2)
eg 10(2+4k)=6(8k−6), 11k2−79k+14=0
correct working clearly leading to the required answer A1
eg 20+36=48k-40k, 56=8k, k=7 and k=211, (k−7)(11k−2)=0
k=7 AG N0
[8 marks]
finding magnitude of →OC (seen anywhere) A1
eg √(−1)2+72+02, √50
valid attempt to find cosθ (M1)
eg cosθ=2+286√(−1)2+72+02, cosθ=56−610√(−1)2+72+02, (√26)2=62+(√50)2−2(6)√50cosθ
finding cosθ A1
eg cosθ=5√50(=1√2)
valid approach to find sinθ (seen anywhere) (M1)
eg θ=π4, sinθ=cosθ, sinθ=√1−2550, sinθ=√1−cos2θ, sinθ=√22
correct substitution of their values into 12absinC (A1)
eg 12×6×√50×√1-2550, 12×6×√50×5√50
area is 15 A1 N3
[6 marks]