DP Mathematics: Analysis and Approaches Questionbank

AHL 3.12—Vector definitions
Description
[N/A]Directly related questions
-
20N.1.SL.TZ0.S_9a:
Express →AB−−→AB in terms of mm.
-
20N.1.SL.TZ0.S_9b:
Find the value of mm.
-
20N.1.SL.TZ0.S_9c:
Consider a unit vector u, such that u=pi-23j+13k, where p>0.
Point C is such that →BC=9u.
Find the coordinates of C.
-
EXN.2.AHL.TZ0.11a:
Find the vectors →AB and →AC.
-
EXN.2.AHL.TZ0.11b:
Use a vector method to show that BˆAC=60°.
-
EXN.2.AHL.TZ0.11c:
Show that the Cartesian equation of the plane Π that contains the triangle ABC is -x+y+z=-2.
-
EXN.2.AHL.TZ0.11d.i:
Find a vector equation of the line L.
-
EXN.2.AHL.TZ0.11d.ii:
Hence determine the minimum distance, dmin, from D to Π.
-
EXN.2.AHL.TZ0.11e:
Find the volume of right-pyramid ABCD.
-
21N.2.AHL.TZ0.11a.i:
Find the vector →AB and the vector →AC.
-
21N.2.AHL.TZ0.11a.ii:
Hence find the equation of Π1, expressing your answer in the form ax+by+cz=d, where a, b, c, d∈ℤ.
-
21N.2.AHL.TZ0.11c.i:
Show that at the point P, λ=34.
-
21N.2.AHL.TZ0.11d.i:
Find the reflection of the point B in the plane Π3.
-
21N.2.AHL.TZ0.11b:
The line L is the intersection of Π1 and Π2. Verify that the vector equation of L can be written as r=(0-20)+λ(11-1).
-
21N.2.AHL.TZ0.11c.ii:
Hence find the coordinates of P.
-
21N.2.AHL.TZ0.11d.ii:
Hence find the vector equation of the line formed when L is reflected in the plane Π3.
-
22M.2.AHL.TZ1.7a:
Find the possible range of values for |a+b|.
-
22M.2.AHL.TZ1.7b:
Given that |a+b| is a minimum, find p.
-
22M.2.AHL.TZ2.11b:
Show that airplane A travels at a greater speed than airplane B.
-
17N.1.AHL.TZ0.H_9a.i:
Find, in terms of a and b →OF.
-
17N.1.AHL.TZ0.H_9a.ii:
Find, in terms of a and b →AF.
-
17N.1.AHL.TZ0.H_9b.i:
Find an expression for →OD in terms of a, b and λ;
-
17N.1.AHL.TZ0.H_9b.ii:
Find an expression for →OD in terms of a, b and μ.
-
17N.1.AHL.TZ0.H_9c:
Show that μ=113, and find the value of λ.
-
17N.1.AHL.TZ0.H_9d:
Deduce an expression for →CD in terms of a and b only.
-
17N.1.AHL.TZ0.H_9e:
Given that area ΔOAB=k(area ΔCAD), find the value of k.
-
18M.2.AHL.TZ1.H_11a:
Show that the two submarines would collide at a point P and write down the coordinates of P.
-
18M.2.AHL.TZ1.H_11b.i:
Show that submarine B travels in the same direction as originally planned.
-
18M.2.AHL.TZ1.H_11b.ii:
Find the value of t when submarine B passes through P.
-
18M.2.AHL.TZ1.H_11c.i:
Find an expression for the distance between the two submarines in terms of t.
-
18M.2.AHL.TZ1.H_11c.ii:
Find the value of t when the two submarines are closest together.
-
18M.2.AHL.TZ1.H_11c.iii:
Find the distance between the two submarines at this time.
-
18M.1.AHL.TZ2.H_9a.i:
Explain why ABCD is a parallelogram.
-
18M.1.AHL.TZ2.H_9a.ii:
Using vector algebra, show that →AD=→BC.
-
18M.1.AHL.TZ2.H_9b:
Show that p = 1, q = 1 and r = 4.
-
18M.1.AHL.TZ2.H_9c:
Find the area of the parallelogram ABCD.
-
18M.1.AHL.TZ2.H_9d:
Find the vector equation of the straight line passing through M and normal to the plane Π containing ABCD.
-
18M.1.AHL.TZ2.H_9e:
Find the Cartesian equation of Π.
-
18M.1.AHL.TZ2.H_9f.i:
Find the coordinates of X, Y and Z.
-
18M.1.AHL.TZ2.H_9f.ii:
Find YZ.
-
19M.1.AHL.TZ1.H_11a.i:
Find how many sets of four points can be selected which can form the vertices of a quadrilateral.
-
19M.1.AHL.TZ1.H_11a.ii:
Find how many sets of three points can be selected which can form the vertices of a triangle.
-
19M.1.AHL.TZ1.H_11b:
Verify that P is the point of intersection of the two lines.
-
19M.1.AHL.TZ1.H_11c:
Write down the value of λ corresponding to the point A.
-
19M.1.AHL.TZ1.H_11d:
Write down →PA and →PB.
-
19M.1.AHL.TZ1.H_11e:
Let C be the point on l1 with coordinates (1, 0, 1) and D be the point on l2 with parameter μ=−2.
Find the area of the quadrilateral CDBA.
-
19M.1.AHL.TZ2.H_2a.i:
Find the vector →AB.
-
19M.1.AHL.TZ2.H_2a.ii:
Find the vector →AC.
-
19M.1.AHL.TZ2.H_2b:
Hence or otherwise, find the area of the triangle ABC.
-
17N.2.SL.TZ0.S_3a:
Find |→AB|.
-
17N.2.SL.TZ0.S_3b:
Let →AC=(300). Find BˆAC.
-
18M.1.SL.TZ1.S_9a:
Show that →AB=(68−5)
-
18M.1.SL.TZ1.S_9b.i:
Find a vector equation for L.
-
18M.1.SL.TZ1.S_9b.ii:
Point C (k , 12 , −k) is on L. Show that k = 14.
-
18M.1.SL.TZ1.S_9c.i:
Find →OB∙→AB.
-
18M.1.SL.TZ1.S_9c.ii:
Write down the value of angle OBA.
-
18M.1.SL.TZ1.S_9d:
Point D is also on L and has coordinates (8, 4, −9).
Find the area of triangle OCD.
-
17M.1.SL.TZ1.S_8a.i:
Find →AB.
-
17M.1.SL.TZ1.S_8a.ii:
Hence, write down a vector equation for L1.
-
17M.1.SL.TZ1.S_8b:
A second line L2, has equation r = (113−14)+s(p01).
Given that L1 and L2 are perpendicular, show that p=2.
-
17M.1.SL.TZ1.S_8c:
The lines L1 and L1 intersect at C(9, 13, z). Find z.
-
17M.1.SL.TZ1.S_8d.i:
Find a unit vector in the direction of L2.
-
17M.1.SL.TZ1.S_8d.ii:
Hence or otherwise, find one point on L2 which is √5 units from C.
-
18N.2.SL.TZ0.S_8a.i:
Find →AB.
-
18N.2.SL.TZ0.S_8a.ii:
Find |→AB|.
-
18N.2.SL.TZ0.S_8b.i:
Find the value of y.
-
18N.2.SL.TZ0.S_8b.ii:
Show that →AC=(8−10−1).
-
18N.2.SL.TZ0.S_8c:
Find the angle between →AB and →AC.
-
18N.2.SL.TZ0.S_8d:
Find the area of triangle ABC.
-
19M.1.SL.TZ2.S_2a:
parallel.
-
19M.1.SL.TZ2.S_2b:
perpendicular.
-
19N.1.SL.TZ0.S_9a.i:
→OA∙→OC.
-
19N.1.SL.TZ0.S_9a.ii:
→OB∙→OC.
-
19N.1.SL.TZ0.S_9b:
Given that AˆOC=BˆOC, show that k=7.
-
19N.1.SL.TZ0.S_9c:
Calculate the area of triangle AOC.
-
19N.2.SL.TZ0.S_2a:
Find the point of intersection of L1 and L2.
-
19N.2.SL.TZ0.S_2b:
Write down a direction vector for L3.
-
19N.2.SL.TZ0.S_2c:
L3 passes through the intersection of L1 and L2.
Write down a vector equation for L3.