User interface language: English | Español

Date November 2020 Marks available 3 Reference code 20N.1.SL.TZ0.S_2
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_2 Adapted from N/A

Question

The following diagram shows a triangle ABC.

AC=15cm, BC=10cm, and AB^C=θ.

Let sin CA^B=33.

Given that AB^C is acute, find sinθ.

[3]
a.

Find cos2×CA^B.

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1 – (sine rule)

evidence of choosing sine rule       (M1)

eg   sinA^a=sinB^b

correct substitution       (A1)

eg   3310=sinθ15 , 330=sinθ15 , 330=sinB15

sinθ=32        A1  N2

 

METHOD 2 – (perpendicular from vertex C)

valid approach to find perpendicular length (may be seen on diagram)       (M1)

eg    h15=33

correct perpendicular length       (A1)

eg    1533 , 53

sinθ=32        A1  N2

 

Note: Do not award the final A mark if candidate goes on to state sinθ=π3, as this demonstrates a lack of understanding.

 

[3 marks]

a.

attempt to substitute into double-angle formula for cosine       (M1)

1-2332, 2632-1, 632-332, cos2θ=1-2322, 1-2sin233

correct working       (A1)

eg  1-2×39, 2×69-1, 69-39

cos2×CA^B=39  =13          A1  N2

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.2—2d and 3d trig, sine rule, cosine rule, area
Show 133 related questions
Topic 3— Geometry and trigonometry » SL 3.6—Pythagorean identity, double angles
Topic 3— Geometry and trigonometry

View options