User interface language: English | Español

Date November 2021 Marks available 1 Reference code 21N.2.SL.TZ0.5
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Hence and Determine Question number 5 Adapted from N/A

Question

The following diagram shows a semicircle with centre O and radius r. Points P, Q and R lie on the circumference of the circle, such that PQ=2r and RO^Q=θ, where 0<θ<π.

Given that the areas of the two shaded regions are equal, show that θ=2sinθ.

[5]
a.

Hence determine the value of θ.

[1]
b.

Markscheme

attempt to find the area of either shaded region in terms of r and θ             (M1)


Note: Do not award M1 if they have only copied from the booklet and not applied to the shaded area.


Area of segment =12r2θ-12r2sinθ                 A1

Area of triangle =12r2sinπ-θ                 A1

correct equation in terms of θ only                 (A1)

θ-sinθ=sinπ-θ

θ-sinθ=sinθ                 A1

θ=2sinθ                 AG


Note: Award a maximum of M1A1A0A0A0 if a candidate uses degrees (i.e., 12r2sin180°-θ), even if later work is correct.

Note: If a candidate directly states that the area of the triangle is 12r2sinθ, award a maximum of M1A1A0A1A1.


[5 marks]

a.

θ=1.89549

θ=1.90                 A1


Note: Award A0 if there is more than one solution. Award A0 for an answer in degrees.


[1 mark]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.2—2d and 3d trig, sine rule, cosine rule, area
Show 133 related questions
Topic 3— Geometry and trigonometry » SL 3.4—Circle: radians, arcs, sectors
Topic 2—Functions » SL 2.4—Key features of graphs, intersections using technology
Topic 2—Functions
Topic 3— Geometry and trigonometry

View options