User interface language: English | Español

Date November 2021 Marks available 5 Reference code 21N.2.SL.TZ0.3
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 3 Adapted from N/A

Question

Consider a triangle ABC, where AC=12, CB=7 and BA^C=25°.

Find the smallest possible perimeter of triangle ABC.

Markscheme

EITHER

attempt to use cosine rule               (M1)

122+AB2-2×12×cos25°×AB=72  OR  AB2-21.7513AB+95=0                 (A1)

at least one correct value for AB                 (A1)

AB=6.05068  OR  AB=15.7007

using their smaller value for AB to find minimum perimeter               (M1)

12+7+6.05068


OR

attempt to use sine rule               (M1)

sinB12=sin25°7  OR  sinB=0.724488  OR  B^=133.573°  OR  B^=46.4263°                 (A1)

at least one correct value for C                 (A1)

C^=21.4263°  OR  C^=108.573°

using their acute value for C^ to find minimum perimeter               (M1)

12+7+122+72-2×12×7cos21.4263°  OR  12+7+7sin21.4263°sin25°


THEN

25.0506

minimum perimeter =25.1.                       A1

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.2—2d and 3d trig, sine rule, cosine rule, area
Show 133 related questions
Topic 3— Geometry and trigonometry » SL 3.5—Unit circle definitions of sin, cos, tan. Exact trig ratios, ambiguous case of sine rule
Topic 3— Geometry and trigonometry

View options