User interface language: English | Español

Date May 2021 Marks available 7 Reference code 21M.1.SL.TZ2.6
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find Question number 6 Adapted from N/A

Question

The following diagram shows triangle ABCABC, with AB=10AB=10, BC=xBC=x and AC=2xAC=2x.

Given that cosˆC=34cosˆC=34, find the area of the triangle.

Give your answer in the form pq2pq2 where p, q+.

Markscheme

METHOD 1

attempt to use the cosine rule to find the value of x             (M1)

100=x2+4x2-2(x)(2x)(34)           A1

2x2=100

x2=50  OR  x=50  (=52)           A1

attempt to find sinˆC  (seen anywhere)             (M1)

sin2ˆC+(34)2=1  OR  x2+32=42 or right triangle with side 3 and hypotenuse 4

sinˆC=74             (A1)


Note:
The marks for finding sinˆC may be awarded independently of the first three marks for finding x.


correct substitution into the area formula using their value of x (or x2) and their value of sinˆC            (M1)

A=12×52×102×74  or  A=12×50×250×74

A=2572           A1

 

METHOD 2

attempt to find the height, h, of the triangle in terms of x           (M1)

h2+(34x)2=x2  OR  h2+(54x)2=102  OR  h=74x           A1

equating their expressions for either h2 or h           (M1)

x2-(34x)2=102-(54x)2  OR  100-2516x2=74x (or equivalent)           A1

x2=50  OR  x=50  (=52)           A1

correct substitution into the area formula using their value of x (or x2)           (M1)

A=12×250×7450  OR  A=12(2×52)(7452)

A=2572           A1

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.2—2d and 3d trig, sine rule, cosine rule, area
Show 133 related questions
Topic 3— Geometry and trigonometry

View options