User interface language: English | Español

Date November Example questions Marks available 5 Reference code EXN.1.AHL.TZ0.7
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number 7 Adapted from N/A

Question

Consider quadrilateral PQRS where PQ is parallel to SR.

In PQRS, PQ=x, SR=y, RS^P=α and QR^S=β.

Find an expression for PS in terms of x,y,sinβ and sinα+β.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

METHOD 1

from vertex P, draws a line parallel to QR that meets SR at a point X        (M1)

uses the sine rule in ΔPSX        M1

PSsinβ=y-xsin180°-α-β        A1

sin180°-α-β=sinα+β        (A1)

PS=y-xsinβsinα+β        A1

 

METHOD 2

let the height of quadrilateral PQRS be h

h=PSsinα        A1

attempts to find a second expression for h        M1

h=y-x-PScosαtanβ

PSsinα=y-x-PScosαtanβ

writes tanβ as sinβcosβ, multiplies through by cosβ and expands the RHS        M1

PSsinαcosβ=y-xsinβ-PScosαsinβ

PS=y-xsinβsinαcosβ+cosαsinβ        A1

PS=y-xsinβsinα+β        A1

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.2—2d and 3d trig, sine rule, cosine rule, area
Show 133 related questions
Topic 3— Geometry and trigonometry » AHL 3.10—Compound angle identities
Topic 3— Geometry and trigonometry

View options