User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.2.sl.TZ2.4
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 4 Adapted from N/A

Question

The depth of water in a port is modelled by the function \(d(t) = p\cos qt + 7.5\), for \(0 \leqslant t \leqslant 12\), where \(t\) is the number of hours after high tide.

At high tide, the depth is 9.7 metres.

At low tide, which is 7 hours later, the depth is 5.3 metres.

Find the value of \(p\).

[2]
a.

Find the value of \(q\).

[2]
b.

Use the model to find the depth of the water 10 hours after high tide.

[2]
c.

Markscheme

valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{{\text{max}} - {\text{min}}}}{2}\), sketch of graph, \(9.7 = p\cos (0) + 7.5\)

\(p = 2.2\)     A1     N2

[2 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(B = \frac{{2\pi }}{{{\text{period}}}}\), period is \(14,{\text{ }}\frac{{360}}{{14}},{\text{ }}5.3 = 2.2\cos 7q + 7.5\)

0.448798

\(q = \frac{{2\pi }}{{14}}{\text{ }}\left( {\frac{\pi }{7}} \right)\), (do not accept degrees)     A1     N2

[2 marks]

b.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(d(10),{\text{ }}2.2\cos \left( {\frac{{20\pi }}{{14}}} \right) + 7.5\)

7.01045

7.01 (m)     A1     N2

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.4 » Composite functions of the form \(f(x) = a\sin (b(x + c)) + d\) .
Show 58 related questions

View options