Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.2.sl.TZ2.4
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 4 Adapted from N/A

Question

The depth of water in a port is modelled by the function d(t)=pcosqt+7.5, for 0, where t is the number of hours after high tide.

At high tide, the depth is 9.7 metres.

At low tide, which is 7 hours later, the depth is 5.3 metres.

Find the value of p.

[2]
a.

Find the value of q.

[2]
b.

Use the model to find the depth of the water 10 hours after high tide.

[2]
c.

Markscheme

valid approach     (M1)

eg\,\,\,\,\,\frac{{{\text{max}} - {\text{min}}}}{2}, sketch of graph, 9.7 = p\cos (0) + 7.5

p = 2.2     A1     N2

[2 marks]

a.

valid approach     (M1)

eg\,\,\,\,\,B = \frac{{2\pi }}{{{\text{period}}}}, period is 14,{\text{ }}\frac{{360}}{{14}},{\text{ }}5.3 = 2.2\cos 7q + 7.5

0.448798

q = \frac{{2\pi }}{{14}}{\text{ }}\left( {\frac{\pi }{7}} \right), (do not accept degrees)     A1     N2

[2 marks]

b.

valid approach     (M1)

eg\,\,\,\,\,d(10),{\text{ }}2.2\cos \left( {\frac{{20\pi }}{{14}}} \right) + 7.5

7.01045

7.01 (m)     A1     N2

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.4 » Composite functions of the form f(x) = a\sin (b(x + c)) + d .
Show 58 related questions

View options