User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.2.sl.TZ2.6
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 6 Adapted from N/A

Question

Let \(f(x) = p\cos \left( {q(x + r)} \right) + 10\), for \(0 \leqslant x \leqslant 20\). The following diagram shows the graph of \(f\).

 

The graph has a maximum at \((4, 18)\) and a minimum at \((16, 2)\).

Write down the value of \(r\).

[2]
a.

Find \(p\).

[2]
b(i).

Find \(q\).

[2]
b(ii).

Solve \(f(x) = 7\).

[2]
c.

Markscheme

\(r =  - 4\)     A2     N2

 

Note: Award A1 for \(r = 4\).

 

[2 marks]

a.

evidence of valid approach     (M1)

eg     \(\frac{{\max y{\text{ value -- }}y{\text{ value}}}}{2}\), distance from \(y = 10\)

\(p = 8\)     A1     N2

[2 marks]

b(i).

valid approach     (M1)

eg     period is \(24\), \(\frac{{360}}{{24}}\), substitute a point into their \(f(x)\)

\(q = \frac{{2\pi }}{{24}}\left( {\frac{\pi }{{12}},{\text{ exact}}} \right)\), \(0.262\) (do not accept degrees)     A1     N2

[2 marks]

b(ii).

valid approach     (M1)

eg     line on graph at \(y = 7,{\text{ }}8\cos \left( {\frac{{2\pi }}{{24}}(x - 4)} \right) + 10 = 7\)

\(x = 11.46828\)

\(x = 11.5\)   (accept \((11.5, 7)\))     A1     N2

[2 marks]

 

Note: Do not award the final A1 if additional values are given. If an incorrect value of \(q\) leads to multiple solutions, award the final A1 only if all solutions within the domain are given.

c.

Examiners report

[N/A]
a.
[N/A]
b(i).
[N/A]
b(ii).
[N/A]
c.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.4 » The circular functions \(\sin x\) , \(\cos x\) and \(\tan x\) : their domains and ranges; amplitude, their periodic nature; and their graphs.
Show 59 related questions

View options