Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.2.sl.TZ2.6
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 6 Adapted from N/A

Question

Let f(x)=pcos(q(x+r))+10, for 0. The following diagram shows the graph of f.

 

The graph has a maximum at (4, 18) and a minimum at (16, 2).

Write down the value of r.

[2]
a.

Find p.

[2]
b(i).

Find q.

[2]
b(ii).

Solve f(x) = 7.

[2]
c.

Markscheme

r =  - 4     A2     N2

 

Note: Award A1 for r = 4.

 

[2 marks]

a.

evidence of valid approach     (M1)

eg     \frac{{\max y{\text{ value -- }}y{\text{ value}}}}{2}, distance from y = 10

p = 8     A1     N2

[2 marks]

b(i).

valid approach     (M1)

eg     period is 24, \frac{{360}}{{24}}, substitute a point into their f(x)

q = \frac{{2\pi }}{{24}}\left( {\frac{\pi }{{12}},{\text{ exact}}} \right), 0.262 (do not accept degrees)     A1     N2

[2 marks]

b(ii).

valid approach     (M1)

eg     line on graph at y = 7,{\text{ }}8\cos \left( {\frac{{2\pi }}{{24}}(x - 4)} \right) + 10 = 7

x = 11.46828

x = 11.5   (accept (11.5, 7))     A1     N2

[2 marks]

 

Note: Do not award the final A1 if additional values are given. If an incorrect value of q leads to multiple solutions, award the final A1 only if all solutions within the domain are given.

c.

Examiners report

[N/A]
a.
[N/A]
b(i).
[N/A]
b(ii).
[N/A]
c.

Syllabus sections

Topic 3 - Circular functions and trigonometry » 3.4 » The circular functions \sin x , \cos x and \tan x : their domains and ranges; amplitude, their periodic nature; and their graphs.
Show 59 related questions

View options