DP Mathematics: Analysis and Approaches Questionbank
AHL 3.10—Compound angle identities
Description
[N/A]Directly related questions
-
EXN.1.AHL.TZ0.7:
Consider quadrilateral where is parallel to .
In , , , and .
Find an expression for in terms of and .
-
21M.1.AHL.TZ2.12b:
Show that where and .
-
21M.1.AHL.TZ2.12c:
Verify that for .
-
SPM.2.AHL.TZ0.12b:
Verify that and satisfy the equation .
-
SPM.2.AHL.TZ0.12a:
Show that .
-
SPM.2.AHL.TZ0.12c:
Hence, or otherwise, show that the exact value of .
-
SPM.2.AHL.TZ0.12d:
Using the results from parts (b) and (c) find the exact value of .
Give your answer in the form where , .
-
EXM.3.AHL.TZ0.5a.ii:
Write down the amplitude of this graph
-
EXM.3.AHL.TZ0.5c.i:
Find , giving the answer to 3 significant figures.
-
EXM.3.AHL.TZ0.5e.i:
.
-
EXM.3.AHL.TZ0.5b.i:
Use your answers from part (a) to write down the value of , and .
-
EXM.3.AHL.TZ0.5f.i:
Show that .
-
EXM.3.AHL.TZ0.5g:
Hence prove your conjectures in part (e).
-
EXM.3.AHL.TZ0.5e.iii:
.
-
EXM.3.AHL.TZ0.5a.i:
Sketch the graph , for
-
EXM.3.AHL.TZ0.5a.iii:
Write down the period of this graph
-
EXM.3.AHL.TZ0.5f.ii:
Show that .
-
EXM.3.AHL.TZ0.5c.ii:
Comment on your answer to part (c)(i).
-
EXM.3.AHL.TZ0.5b.ii:
Find the value of .
-
EXM.3.AHL.TZ0.5e.iv:
.
-
EXM.3.AHL.TZ0.5d:
By considering the graph of , find the value of , , and .
-
EXM.3.AHL.TZ0.5e.ii:
.
-
17M.1.AHL.TZ2.H_11a:
Solve .
-
17M.1.AHL.TZ2.H_11b:
Show that .
-
17M.1.AHL.TZ2.H_11c.i:
Find the modulus and argument of in terms of . Express each answer in its simplest form.
-
17M.1.AHL.TZ2.H_11c.ii:
Hence find the cube roots of in modulus-argument form.
-
19M.1.AHL.TZ1.H_9a:
Show that .
-
19M.1.AHL.TZ1.H_9b:
Show that .
-
19M.1.AHL.TZ1.H_9c:
Hence or otherwise find in the form where , .
-
18M.2.AHL.TZ1.H_3:
Let where .
Express in terms of sin and cos .
-
18N.1.AHL.TZ0.H_11a:
Find the roots of which satisfy the condition , expressing your answers in the form , where , .
-
18N.1.AHL.TZ0.H_11b.i:
Show that Re S = Im S.
-
18N.1.AHL.TZ0.H_11b.ii:
By writing as , find the value of cos in the form , where , and are integers to be determined.
-
18N.1.AHL.TZ0.H_11b.iii:
Hence, or otherwise, show that S = .
-
18N.2.AHL.TZ0.H_11a:
Find an expression for in terms of .
-
18N.2.AHL.TZ0.H_11b:
Show that .
-
18N.2.AHL.TZ0.H_11c:
By sketching the graph of as a function of , determine the range of values of for which there are possible values of .
-
16N.1.AHL.TZ0.H_13a:
Find the value of .
-
16N.1.AHL.TZ0.H_13d:
Hence or otherwise solve the equation in the interval .
-
19N.1.AHL.TZ0.H_4:
and are acute angles such that and .
Show that .