Date | May 2018 | Marks available | 4 | Reference code | 18M.1.hl.TZ2.7 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
Consider the distinct complex numbers z=a+ib,w=c+idz=a+ib,w=c+id, where a,b,c,d∈R.
Find the real part of z+wz−w.
[4]
a.
Find the value of the real part of z+wz−w when |z|=|w|.
[2]
b.
Markscheme
z+wz−w=(a+c)+i(b+d)(a−c)+i(b−d)
=(a+c)+i(b+d)(a−c)+i(b−d)×(a−c)−i(b−d)(a−c)−i(b−d) M1A1
real part =(a+c)(a−c)+(b+d)(b−d)(a−c)2+(b−d)2=(a2−c2+b2−d2(a−c)2+(b−d)2) A1A1
Note: Award A1 for numerator, A1 for denominator.
[4 marks]
a.
|z|=|w|⇒a2+b2=c2+d2 R1
hence real part = 0 A1
Note: Do not award R0A1.
[2 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.
Syllabus sections
Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number i=√−1 ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 38 related questions