User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.hl.TZ2.7
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 7 Adapted from N/A

Question

Consider the distinct complex numbers z=a+ib,w=c+idz=a+ib,w=c+id, where a,b,c,dR.

Find the real part of z+wzw.

[4]
a.

Find the value of the real part of z+wzw when |z|=|w|.

[2]
b.

Markscheme

z+wzw=(a+c)+i(b+d)(ac)+i(bd)

=(a+c)+i(b+d)(ac)+i(bd)×(ac)i(bd)(ac)i(bd)     M1A1

real part =(a+c)(ac)+(b+d)(bd)(ac)2+(bd)2=(a2c2+b2d2(ac)2+(bd)2)     A1A1

Note: Award A1 for numerator, A1 for denominator.

[4 marks]

a.

|z|=|w|a2+b2=c2+d2     R1

hence real part = 0      A1

Note: Do not award R0A1.

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Core: Algebra » 1.5 » Complex numbers: the number i=1 ; the terms real part, imaginary part, conjugate, modulus and argument.
Show 38 related questions

View options