Date | May 2018 | Marks available | 4 | Reference code | 18M.1.hl.TZ2.7 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
Consider the distinct complex numbers \(z = a + {\text{i}}b,\,\,w = c + {\text{i}}d\), where \(a,\,b,\,c,\,d \in \mathbb{R}\).
Find the real part of \(\frac{{z + w}}{{z - w}}\).
Find the value of the real part of \(\frac{{z + w}}{{z - w}}\) when \(\left| z \right| = \left| w \right|\).
Markscheme
\(\frac{{z + w}}{{z - w}} = \frac{{\left( {a + c} \right) + {\text{i}}\left( {b + d} \right)}}{{\left( {a - c} \right) + {\text{i}}\left( {b - d} \right)}}\)
\( = \frac{{\left( {a + c} \right) + {\text{i}}\left( {b + d} \right)}}{{\left( {a - c} \right) + {\text{i}}\left( {b - d} \right)}} \times \frac{{\left( {a - c} \right) - {\text{i}}\left( {b - d} \right)}}{{\left( {a - c} \right) - {\text{i}}\left( {b - d} \right)}}\) M1A1
real part \( = \frac{{\left( {a + c} \right)\left( {a - c} \right) + \left( {b + d} \right)\left( {b - d} \right)}}{{{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}}} = \left( {\frac{{{a^2} - {c^2} + {b^2} - {d^2}}}{{{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}}}} \right)\) A1A1
Note: Award A1 for numerator, A1 for denominator.
[4 marks]
\(\left| z \right| = \left| w \right| \Rightarrow {a^2} + {b^2} = {c^2} + {d^2}\) R1
hence real part = 0 A1
Note: Do not award R0A1.
[2 marks]